{"title":"无奇数孔图的鲍罗丁-科斯托奇卡猜想成立","authors":"Rong Chen, Kaiyang Lan, Xinheng Lin, Yidong Zhou","doi":"10.1007/s00373-024-02753-0","DOIUrl":null,"url":null,"abstract":"<p>The Borodin–Kostochka Conjecture states that for a graph <i>G</i>, if <span>\\(\\Delta (G)\\ge 9\\)</span>, then <span>\\(\\chi (G)\\le \\max \\{\\Delta (G)-1,\\omega (G)\\}\\)</span>. In this paper, we prove the Borodin–Kostochka Conjecture holding for odd-hole-free graphs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borodin–Kostochka Conjecture Holds for Odd-Hole-Free Graphs\",\"authors\":\"Rong Chen, Kaiyang Lan, Xinheng Lin, Yidong Zhou\",\"doi\":\"10.1007/s00373-024-02753-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Borodin–Kostochka Conjecture states that for a graph <i>G</i>, if <span>\\\\(\\\\Delta (G)\\\\ge 9\\\\)</span>, then <span>\\\\(\\\\chi (G)\\\\le \\\\max \\\\{\\\\Delta (G)-1,\\\\omega (G)\\\\}\\\\)</span>. In this paper, we prove the Borodin–Kostochka Conjecture holding for odd-hole-free graphs.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02753-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02753-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Borodin–Kostochka Conjecture Holds for Odd-Hole-Free Graphs
The Borodin–Kostochka Conjecture states that for a graph G, if \(\Delta (G)\ge 9\), then \(\chi (G)\le \max \{\Delta (G)-1,\omega (G)\}\). In this paper, we prove the Borodin–Kostochka Conjecture holding for odd-hole-free graphs.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.