q 伯格曼空间上的托普利兹算子和组成算子

Pub Date : 2024-02-10 DOI:10.1007/s11868-023-00583-x
Houcine Sadraoui, Borhen Halouani
{"title":"q 伯格曼空间上的托普利兹算子和组成算子","authors":"Houcine Sadraoui, Borhen Halouani","doi":"10.1007/s11868-023-00583-x","DOIUrl":null,"url":null,"abstract":"<p>In this work we consider Toeplitz operators and composition operators on the <i>q</i>-Bergman space.We give some spectral properties of Toeplitz operators in general and a sufficient condition for hyponormality of Toeplitz operators in the case of a symbol where the analytic part is a monomial. We also give a necessary condition for hyponormality in the general case of a harmonic symbol as well as a necessary and sufficient condition for such operators to commute. For composition operators we give necessary conditions and sufficient conditions for their compactness and normality, as well as necessary conditions for cohyponormality in the case of a linear fractional map and we finally compute the adjoint in the case of a linear map.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toeplitz operators and composition operators on the q-Bergman space\",\"authors\":\"Houcine Sadraoui, Borhen Halouani\",\"doi\":\"10.1007/s11868-023-00583-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work we consider Toeplitz operators and composition operators on the <i>q</i>-Bergman space.We give some spectral properties of Toeplitz operators in general and a sufficient condition for hyponormality of Toeplitz operators in the case of a symbol where the analytic part is a monomial. We also give a necessary condition for hyponormality in the general case of a harmonic symbol as well as a necessary and sufficient condition for such operators to commute. For composition operators we give necessary conditions and sufficient conditions for their compactness and normality, as well as necessary conditions for cohyponormality in the case of a linear fractional map and we finally compute the adjoint in the case of a linear map.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-023-00583-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-023-00583-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑了 q-Bergman 空间上的托普利兹算子和组成算子。我们给出了一般托普利兹算子的一些谱性质,并给出了在符号的解析部分是单项式的情况下托普利兹算子下规范性的充分条件。我们还给出了谐符号一般情况下下规范性的必要条件,以及此类算子换向的必要条件和充分条件。对于组成算子,我们给出了其紧凑性和正态性的必要条件和充分条件,以及线性分数映射情况下的共正态性的必要条件,最后我们计算了线性映射情况下的邻接算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Toeplitz operators and composition operators on the q-Bergman space

In this work we consider Toeplitz operators and composition operators on the q-Bergman space.We give some spectral properties of Toeplitz operators in general and a sufficient condition for hyponormality of Toeplitz operators in the case of a symbol where the analytic part is a monomial. We also give a necessary condition for hyponormality in the general case of a harmonic symbol as well as a necessary and sufficient condition for such operators to commute. For composition operators we give necessary conditions and sufficient conditions for their compactness and normality, as well as necessary conditions for cohyponormality in the case of a linear fractional map and we finally compute the adjoint in the case of a linear map.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信