{"title":"三维双极可压缩纳维-斯托克斯-泊松系统中的质量集中现象","authors":"","doi":"10.1007/s11868-023-00582-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we investigate the blow-up mechanism to the bipolar compressible Navier–Stokes–Poisson system in three dimensions. It is essentially shown that the mass of the model will concentrate in some spatial points, even if the initial density contains vacuum states, provided that the smooth solution develops singularity in finite time.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass concentration phenomenon in the 3D bipolar compressible Navier–Stokes–Poisson system\",\"authors\":\"\",\"doi\":\"10.1007/s11868-023-00582-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>In this paper, we investigate the blow-up mechanism to the bipolar compressible Navier–Stokes–Poisson system in three dimensions. It is essentially shown that the mass of the model will concentrate in some spatial points, even if the initial density contains vacuum states, provided that the smooth solution develops singularity in finite time.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-023-00582-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-023-00582-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Mass concentration phenomenon in the 3D bipolar compressible Navier–Stokes–Poisson system
Abstract
In this paper, we investigate the blow-up mechanism to the bipolar compressible Navier–Stokes–Poisson system in three dimensions. It is essentially shown that the mass of the model will concentrate in some spatial points, even if the initial density contains vacuum states, provided that the smooth solution develops singularity in finite time.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.