边色完整图中的并行连接性:复杂性结果

Pub Date : 2024-02-10 DOI:10.1007/s00373-023-02747-4
Rachid Saad
{"title":"边色完整图中的并行连接性:复杂性结果","authors":"Rachid Saad","doi":"10.1007/s00373-023-02747-4","DOIUrl":null,"url":null,"abstract":"<p>Given an edge-colored graph <span>\\(G_c\\)</span>, a set of <i>p</i> pairs of vertices <span>\\((a_i,b_i)\\)</span> together with <i>p</i> numbers <span>\\(k_1,k_2, \\ldots k_p\\)</span> associated with the pairs, can we find a set of alternating paths linking the pairs <span>\\((a_1,b_1)\\)</span>, <span>\\((a_2,b_2), \\ldots \\)</span>, in their respective numbers <span>\\(k_1,k_2,\\ldots k_p\\)</span>? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results\",\"authors\":\"Rachid Saad\",\"doi\":\"10.1007/s00373-023-02747-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an edge-colored graph <span>\\\\(G_c\\\\)</span>, a set of <i>p</i> pairs of vertices <span>\\\\((a_i,b_i)\\\\)</span> together with <i>p</i> numbers <span>\\\\(k_1,k_2, \\\\ldots k_p\\\\)</span> associated with the pairs, can we find a set of alternating paths linking the pairs <span>\\\\((a_1,b_1)\\\\)</span>, <span>\\\\((a_2,b_2), \\\\ldots \\\\)</span>, in their respective numbers <span>\\\\(k_1,k_2,\\\\ldots k_p\\\\)</span>? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02747-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02747-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个边色图(G_c\ ),一组顶点对 \((a_i,b_i)\) 以及与这些顶点对相关的 p 个数 \(k_1,k_2, \ldots k_p\)、我们能不能找到一组交替的路径来连接这些数对\((a_1,b_1)\((a_2,b_2)\ldots \),在它们各自的数\(k_1,k_2,\ldots k_p\)中?)这就是本文要解决的问题。由于这个问题非常难以解决,我们考虑将其限制为边缘着色的完整图。即使这样限制,如果路径/轨迹必须是边相交的,问题仍然难以解决,但如果路径/轨迹是顶点相交的,问题就不再难以解决了,本文证明了这一点。最后,本文提出了一种近似算法,对于该问题的一个受限版本,其性能比逐渐接近 3/4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results

分享
查看原文
Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results

Given an edge-colored graph \(G_c\), a set of p pairs of vertices \((a_i,b_i)\) together with p numbers \(k_1,k_2, \ldots k_p\) associated with the pairs, can we find a set of alternating paths linking the pairs \((a_1,b_1)\), \((a_2,b_2), \ldots \), in their respective numbers \(k_1,k_2,\ldots k_p\)? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信