边色完整图中的并行连接性:复杂性结果

IF 0.6 4区 数学 Q3 MATHEMATICS
Rachid Saad
{"title":"边色完整图中的并行连接性:复杂性结果","authors":"Rachid Saad","doi":"10.1007/s00373-023-02747-4","DOIUrl":null,"url":null,"abstract":"<p>Given an edge-colored graph <span>\\(G_c\\)</span>, a set of <i>p</i> pairs of vertices <span>\\((a_i,b_i)\\)</span> together with <i>p</i> numbers <span>\\(k_1,k_2, \\ldots k_p\\)</span> associated with the pairs, can we find a set of alternating paths linking the pairs <span>\\((a_1,b_1)\\)</span>, <span>\\((a_2,b_2), \\ldots \\)</span>, in their respective numbers <span>\\(k_1,k_2,\\ldots k_p\\)</span>? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"88 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results\",\"authors\":\"Rachid Saad\",\"doi\":\"10.1007/s00373-023-02747-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an edge-colored graph <span>\\\\(G_c\\\\)</span>, a set of <i>p</i> pairs of vertices <span>\\\\((a_i,b_i)\\\\)</span> together with <i>p</i> numbers <span>\\\\(k_1,k_2, \\\\ldots k_p\\\\)</span> associated with the pairs, can we find a set of alternating paths linking the pairs <span>\\\\((a_1,b_1)\\\\)</span>, <span>\\\\((a_2,b_2), \\\\ldots \\\\)</span>, in their respective numbers <span>\\\\(k_1,k_2,\\\\ldots k_p\\\\)</span>? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02747-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02747-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定一个边色图(G_c\ ),一组顶点对 \((a_i,b_i)\) 以及与这些顶点对相关的 p 个数 \(k_1,k_2, \ldots k_p\)、我们能不能找到一组交替的路径来连接这些数对\((a_1,b_1)\((a_2,b_2)\ldots \),在它们各自的数\(k_1,k_2,\ldots k_p\)中?)这就是本文要解决的问题。由于这个问题非常难以解决,我们考虑将其限制为边缘着色的完整图。即使这样限制,如果路径/轨迹必须是边相交的,问题仍然难以解决,但如果路径/轨迹是顶点相交的,问题就不再难以解决了,本文证明了这一点。最后,本文提出了一种近似算法,对于该问题的一个受限版本,其性能比逐渐接近 3/4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results

Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results

Given an edge-colored graph \(G_c\), a set of p pairs of vertices \((a_i,b_i)\) together with p numbers \(k_1,k_2, \ldots k_p\) associated with the pairs, can we find a set of alternating paths linking the pairs \((a_1,b_1)\), \((a_2,b_2), \ldots \), in their respective numbers \(k_1,k_2,\ldots k_p\)? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信