{"title":"边色完整图中的并行连接性:复杂性结果","authors":"Rachid Saad","doi":"10.1007/s00373-023-02747-4","DOIUrl":null,"url":null,"abstract":"<p>Given an edge-colored graph <span>\\(G_c\\)</span>, a set of <i>p</i> pairs of vertices <span>\\((a_i,b_i)\\)</span> together with <i>p</i> numbers <span>\\(k_1,k_2, \\ldots k_p\\)</span> associated with the pairs, can we find a set of alternating paths linking the pairs <span>\\((a_1,b_1)\\)</span>, <span>\\((a_2,b_2), \\ldots \\)</span>, in their respective numbers <span>\\(k_1,k_2,\\ldots k_p\\)</span>? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results\",\"authors\":\"Rachid Saad\",\"doi\":\"10.1007/s00373-023-02747-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given an edge-colored graph <span>\\\\(G_c\\\\)</span>, a set of <i>p</i> pairs of vertices <span>\\\\((a_i,b_i)\\\\)</span> together with <i>p</i> numbers <span>\\\\(k_1,k_2, \\\\ldots k_p\\\\)</span> associated with the pairs, can we find a set of alternating paths linking the pairs <span>\\\\((a_1,b_1)\\\\)</span>, <span>\\\\((a_2,b_2), \\\\ldots \\\\)</span>, in their respective numbers <span>\\\\(k_1,k_2,\\\\ldots k_p\\\\)</span>? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-023-02747-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-023-02747-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel Connectivity in Edge-Colored Complete Graphs: Complexity Results
Given an edge-colored graph \(G_c\), a set of p pairs of vertices \((a_i,b_i)\) together with p numbers \(k_1,k_2, \ldots k_p\) associated with the pairs, can we find a set of alternating paths linking the pairs \((a_1,b_1)\), \((a_2,b_2), \ldots \), in their respective numbers \(k_1,k_2,\ldots k_p\)? Such is the question addressed in this paper. The problem being highly intractable, we consider a restricted version of it to edge-colored complete graphs. Even so restricted, the problem remains intractable if the paths/trails must be edge-disjoint, but it ceases to be so if the paths/trails are to be vertex-disjoint, as is proved in this paper. An approximation algorithm is presented in the end, with a performance ratio asymptotically close to 3/4 for a restricted version of the problem.