{"title":"多重突变和斯特林多重突变","authors":"Richard A. Brualdi, Geir Dahl","doi":"10.1007/s00373-024-02751-2","DOIUrl":null,"url":null,"abstract":"<p>We consider multipermutations and a certain partial order, the weak Bruhat order, on this set. This generalizes the Bruhat order for permutations, and is defined in terms of containment of inversions. Different characterizations of this order are given. We also study special multipermutations called Stirling multipermutations and their properties.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multipermutations and Stirling Multipermutations\",\"authors\":\"Richard A. Brualdi, Geir Dahl\",\"doi\":\"10.1007/s00373-024-02751-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider multipermutations and a certain partial order, the weak Bruhat order, on this set. This generalizes the Bruhat order for permutations, and is defined in terms of containment of inversions. Different characterizations of this order are given. We also study special multipermutations called Stirling multipermutations and their properties.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02751-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02751-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider multipermutations and a certain partial order, the weak Bruhat order, on this set. This generalizes the Bruhat order for permutations, and is defined in terms of containment of inversions. Different characterizations of this order are given. We also study special multipermutations called Stirling multipermutations and their properties.