开发基于事件的同步发电机集中励磁控制方法以提高暂态稳定性

IF 0.4 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Fumichika Yamaoka, Kenichi Kawabe
{"title":"开发基于事件的同步发电机集中励磁控制方法以提高暂态稳定性","authors":"Fumichika Yamaoka,&nbsp;Kenichi Kawabe","doi":"10.1002/eej.23458","DOIUrl":null,"url":null,"abstract":"<p>Maintenance of transient stability is important for the stable operation of power systems. However, as a large amount of renewable energy sources are concerned that the transient stability deteriorates. Excitation control systems have been widely used to improve the transient stability. The defect is that only the synchronous generator (SG) near the fault location changes the excitation voltage so much immediately after the fault. In this study, we propose a novel excitation control method based on an event-based wide-area emergency control system. In this method, the SGs that are distant from the fault location play a role to mitigate the first swing as well as the SGs near the fault. The effectiveness of the proposed method is verified demonstrated by numerical simulation for a multi-machine test system</p>","PeriodicalId":50550,"journal":{"name":"Electrical Engineering in Japan","volume":"217 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of event-based centralized excitation control method of synchronous generators for improving the transient stability\",\"authors\":\"Fumichika Yamaoka,&nbsp;Kenichi Kawabe\",\"doi\":\"10.1002/eej.23458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maintenance of transient stability is important for the stable operation of power systems. However, as a large amount of renewable energy sources are concerned that the transient stability deteriorates. Excitation control systems have been widely used to improve the transient stability. The defect is that only the synchronous generator (SG) near the fault location changes the excitation voltage so much immediately after the fault. In this study, we propose a novel excitation control method based on an event-based wide-area emergency control system. In this method, the SGs that are distant from the fault location play a role to mitigate the first swing as well as the SGs near the fault. The effectiveness of the proposed method is verified demonstrated by numerical simulation for a multi-machine test system</p>\",\"PeriodicalId\":50550,\"journal\":{\"name\":\"Electrical Engineering in Japan\",\"volume\":\"217 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eej.23458\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eej.23458","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

保持暂态稳定性对电力系统的稳定运行非常重要。然而,随着大量可再生能源的出现,暂态稳定性也随之恶化。励磁控制系统已被广泛用于改善暂态稳定性。其缺陷在于,只有故障位置附近的同步发电机(SG)在故障发生后会立即大幅改变励磁电压。在本研究中,我们提出了一种基于基于事件的广域应急控制系统的新型励磁控制方法。在这种方法中,与故障位置相距较远的 SG 和故障附近的 SG 一样,都起到了缓解首次摆动的作用。通过对多机器测试系统进行数值模拟,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of event-based centralized excitation control method of synchronous generators for improving the transient stability

Maintenance of transient stability is important for the stable operation of power systems. However, as a large amount of renewable energy sources are concerned that the transient stability deteriorates. Excitation control systems have been widely used to improve the transient stability. The defect is that only the synchronous generator (SG) near the fault location changes the excitation voltage so much immediately after the fault. In this study, we propose a novel excitation control method based on an event-based wide-area emergency control system. In this method, the SGs that are distant from the fault location play a role to mitigate the first swing as well as the SGs near the fault. The effectiveness of the proposed method is verified demonstrated by numerical simulation for a multi-machine test system

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Engineering in Japan
Electrical Engineering in Japan 工程技术-工程:电子与电气
CiteScore
0.80
自引率
0.00%
发文量
51
审稿时长
4-8 weeks
期刊介绍: Electrical Engineering in Japan (EEJ) is an official journal of the Institute of Electrical Engineers of Japan (IEEJ). This authoritative journal is a translation of the Transactions of the Institute of Electrical Engineers of Japan. It publishes 16 issues a year on original research findings in Electrical Engineering with special focus on the science, technology and applications of electric power, such as power generation, transmission and conversion, electric railways (including magnetic levitation devices), motors, switching, power economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信