关于凯格尔-维兰德的$\sigma$$问题

IF 0.4 4区 数学 Q4 MATHEMATICS
{"title":"关于凯格尔-维兰德的$\\sigma$$问题","authors":"","doi":"10.1134/s0081543823060093","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>For an arbitrary partition <span> <span>\\(\\sigma\\)</span> </span> of the set <span> <span>\\(\\mathbb{P}\\)</span> </span> of all primes, a sufficient condition for the <span> <span>\\(\\sigma\\)</span> </span>-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt <span> <span>\\(\\sigma\\)</span> </span>-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank 1. </p>","PeriodicalId":54557,"journal":{"name":"Proceedings of the Steklov Institute of Mathematics","volume":"7 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kegel–Wielandt $$\\\\sigma$$ -Problem\",\"authors\":\"\",\"doi\":\"10.1134/s0081543823060093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>For an arbitrary partition <span> <span>\\\\(\\\\sigma\\\\)</span> </span> of the set <span> <span>\\\\(\\\\mathbb{P}\\\\)</span> </span> of all primes, a sufficient condition for the <span> <span>\\\\(\\\\sigma\\\\)</span> </span>-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt <span> <span>\\\\(\\\\sigma\\\\)</span> </span>-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank 1. </p>\",\"PeriodicalId\":54557,\"journal\":{\"name\":\"Proceedings of the Steklov Institute of Mathematics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Steklov Institute of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543823060093\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Steklov Institute of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060093","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对于所有素数集 \(\mathbb{P}\)的任意分割 \(\sigma\),给出了有限群的子群的 \(\sigma\)-次正态性的充分条件。证明了 Kegel-Wielandt \(\sigma\) - 问题在所有有限群的类中有一个正解,这些有限群的所有非标注组成因子都是交替群、零星群或秩为 1 的李群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Kegel–Wielandt $$\sigma$$ -Problem

Abstract

For an arbitrary partition  \(\sigma\) of the set \(\mathbb{P}\) of all primes, a sufficient condition for the \(\sigma\) -subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt \(\sigma\) -problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Steklov Institute of Mathematics
Proceedings of the Steklov Institute of Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
24
审稿时长
4-8 weeks
期刊介绍: Proceedings of the Steklov Institute of Mathematics is a cover-to-cover translation of the Trudy Matematicheskogo Instituta imeni V.A. Steklova of the Russian Academy of Sciences. Each issue ordinarily contains either one book-length article or a collection of articles pertaining to the same topic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信