关于凯格尔-维兰德的$\sigma$$问题

Pub Date : 2023-12-01 DOI:10.1134/s0081543823060093
{"title":"关于凯格尔-维兰德的$\\sigma$$问题","authors":"","doi":"10.1134/s0081543823060093","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>For an arbitrary partition <span> <span>\\(\\sigma\\)</span> </span> of the set <span> <span>\\(\\mathbb{P}\\)</span> </span> of all primes, a sufficient condition for the <span> <span>\\(\\sigma\\)</span> </span>-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt <span> <span>\\(\\sigma\\)</span> </span>-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank 1. </p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Kegel–Wielandt $$\\\\sigma$$ -Problem\",\"authors\":\"\",\"doi\":\"10.1134/s0081543823060093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>For an arbitrary partition <span> <span>\\\\(\\\\sigma\\\\)</span> </span> of the set <span> <span>\\\\(\\\\mathbb{P}\\\\)</span> </span> of all primes, a sufficient condition for the <span> <span>\\\\(\\\\sigma\\\\)</span> </span>-subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt <span> <span>\\\\(\\\\sigma\\\\)</span> </span>-problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank 1. </p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543823060093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 对于所有素数集 \(\mathbb{P}\)的任意分割 \(\sigma\),给出了有限群的子群的 \(\sigma\)-次正态性的充分条件。证明了 Kegel-Wielandt \(\sigma\) - 问题在所有有限群的类中有一个正解,这些有限群的所有非标注组成因子都是交替群、零星群或秩为 1 的李群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the Kegel–Wielandt $$\sigma$$ -Problem

Abstract

For an arbitrary partition  \(\sigma\) of the set \(\mathbb{P}\) of all primes, a sufficient condition for the \(\sigma\) -subnormality of a subgroup of a finite group is given. It is proved that the Kegel–Wielandt \(\sigma\) -problem has a positive solution in the class of all finite groups all of whose nonabelian composition factors are alternating groups, sporadic groups, or Lie groups of rank 1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信