有限简单群的非正则相对最大子群实例

Pub Date : 2024-02-12 DOI:10.1134/s0081543823060135
B. Li, D. O. Revin
{"title":"有限简单群的非正则相对最大子群实例","authors":"B. Li, D. O. Revin","doi":"10.1134/s0081543823060135","DOIUrl":null,"url":null,"abstract":"<p>Using R. Wilson’s recent results, we prove the existence of triples <span>\\((\\mathfrak{X},G,H)\\)</span> such that <span>\\(\\mathfrak{X}\\)</span> is a complete (i.e., closed under taking subgroups, homomorphic images, and extensions) class of finite groups, <span>\\(G\\)</span> is a finite simple group, and <span>\\(H\\)</span> is its <span>\\(\\mathfrak{X}\\)</span>-maximal subgroup nonpronormal in <span>\\(G\\)</span>. This disproves a conjecture stated earlier by the second author and W. Guo.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups\",\"authors\":\"B. Li, D. O. Revin\",\"doi\":\"10.1134/s0081543823060135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using R. Wilson’s recent results, we prove the existence of triples <span>\\\\((\\\\mathfrak{X},G,H)\\\\)</span> such that <span>\\\\(\\\\mathfrak{X}\\\\)</span> is a complete (i.e., closed under taking subgroups, homomorphic images, and extensions) class of finite groups, <span>\\\\(G\\\\)</span> is a finite simple group, and <span>\\\\(H\\\\)</span> is its <span>\\\\(\\\\mathfrak{X}\\\\)</span>-maximal subgroup nonpronormal in <span>\\\\(G\\\\)</span>. This disproves a conjecture stated earlier by the second author and W. Guo.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543823060135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用 R. Wilson 的最新成果,我们证明了三元组 \((\mathfrak{X},G,H)\)的存在,使得 \(\mathfrak{X}\) 是一个完整的(即、(G)是一个有限简单群,而\(H)是它\(\mathfrak{X}\)-最大子群在\(G)中的非正则。)这推翻了第二作者和 W. Guo 早先提出的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups

分享
查看原文
Examples of Nonpronormal Relatively Maximal Subgroups of Finite Simple Groups

Using R. Wilson’s recent results, we prove the existence of triples \((\mathfrak{X},G,H)\) such that \(\mathfrak{X}\) is a complete (i.e., closed under taking subgroups, homomorphic images, and extensions) class of finite groups, \(G\) is a finite simple group, and \(H\) is its \(\mathfrak{X}\)-maximal subgroup nonpronormal in \(G\). This disproves a conjecture stated earlier by the second author and W. Guo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信