{"title":"双分量福恩贝格-惠瑟姆系统弱解的存在和强解的膨胀","authors":"Zhihao Bai, Yang Wang, Long Wei","doi":"10.1007/s00028-023-00941-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces <span>\\(H^{s}\\times H^{s-1}\\)</span> (<span>\\(s\\in (1,3/2]\\)</span>) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system\",\"authors\":\"Zhihao Bai, Yang Wang, Long Wei\",\"doi\":\"10.1007/s00028-023-00941-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces <span>\\\\(H^{s}\\\\times H^{s-1}\\\\)</span> (<span>\\\\(s\\\\in (1,3/2]\\\\)</span>) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00941-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00941-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system
In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces \(H^{s}\times H^{s-1}\) (\(s\in (1,3/2]\)) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators