电对流模型解在 $${mathbb {R}}^2$ 中的长时间行为

IF 1.1 3区 数学 Q1 MATHEMATICS
{"title":"电对流模型解在 $${mathbb {R}}^2$ 中的长时间行为","authors":"","doi":"10.1007/s00028-024-00944-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We consider a two dimensional electroconvection model which consists of a nonlinear and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the solutions decay in time in <span> <span>\\(L^2({{\\mathbb {R}}}^2)\\)</span> </span> at the same sharp rate as the linear uncoupled system. This is achieved by proving that the difference between the nonlinear and linear evolution decays at a faster rate than the linear evolution. In order to prove the sharp <span> <span>\\(L^2\\)</span> </span> decay we establish bounds for decay in <span> <span>\\(H^2({{\\mathbb {R}}}^2)\\)</span> </span> and a logarithmic growth in time of a quadratic moment of the charge density.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long time behavior of solutions of an electroconvection model in $${\\\\mathbb {R}}^2$$\",\"authors\":\"\",\"doi\":\"10.1007/s00028-024-00944-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We consider a two dimensional electroconvection model which consists of a nonlinear and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the solutions decay in time in <span> <span>\\\\(L^2({{\\\\mathbb {R}}}^2)\\\\)</span> </span> at the same sharp rate as the linear uncoupled system. This is achieved by proving that the difference between the nonlinear and linear evolution decays at a faster rate than the linear evolution. In order to prove the sharp <span> <span>\\\\(L^2\\\\)</span> </span> decay we establish bounds for decay in <span> <span>\\\\(H^2({{\\\\mathbb {R}}}^2)\\\\)</span> </span> and a logarithmic growth in time of a quadratic moment of the charge density.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-024-00944-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00944-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们考虑了一个二维电对流模型,它由一个非线性和非局部系统组成,耦合了电荷分布和流体的演化。我们证明,解在 \(L^2({{\mathbb {R}}^2)\) 中的时间衰减速率与线性非耦合系统相同。这是通过证明非线性演化与线性演化之间的差值以比线性演化更快的速度衰减来实现的。为了证明\(L^2\)的急剧衰减,我们建立了\(H^2({{/\mathbb {R}}^2)\) 的衰减和电荷密度二次矩的时间对数增长的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long time behavior of solutions of an electroconvection model in $${\mathbb {R}}^2$$

Abstract

We consider a two dimensional electroconvection model which consists of a nonlinear and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the solutions decay in time in \(L^2({{\mathbb {R}}}^2)\) at the same sharp rate as the linear uncoupled system. This is achieved by proving that the difference between the nonlinear and linear evolution decays at a faster rate than the linear evolution. In order to prove the sharp \(L^2\) decay we establish bounds for decay in \(H^2({{\mathbb {R}}}^2)\) and a logarithmic growth in time of a quadratic moment of the charge density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信