{"title":"由区间上的 Sinc 函数生成的广义平移算子","authors":"V. V. Arestov, M. V. Deikalova","doi":"10.1134/s0081543823060032","DOIUrl":null,"url":null,"abstract":"<p>We discuss the properties of the generalized translation operator generated by the system of functions <span>\\(\\mathfrak{S}=\\{{(\\sin k\\pi x)}/{(k\\pi x)}\\}_{k=1}^{\\infty}\\)</span> in the spaces <span>\\(L^{q}=L^{q}((0,1),{\\upsilon})\\)</span>, <span>\\(q\\geq 1\\)</span>, on the interval <span>\\((0,1)\\)</span> with the weight <span>\\(\\upsilon(x)=x^{2}\\)</span>. We find an integral representation of this operator and study its norm in the spaces <span>\\(L^{q}\\)</span>, <span>\\(1\\leq q\\leq\\infty\\)</span>. The translation operator is applied to the study of Nikol’skii’s inequality between the uniform norm and the <span>\\(L^{q}\\)</span>-norm of polynomials in the system <span>\\(\\mathfrak{S}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Translation Operator Generated by the Sinc Function on an Interval\",\"authors\":\"V. V. Arestov, M. V. Deikalova\",\"doi\":\"10.1134/s0081543823060032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We discuss the properties of the generalized translation operator generated by the system of functions <span>\\\\(\\\\mathfrak{S}=\\\\{{(\\\\sin k\\\\pi x)}/{(k\\\\pi x)}\\\\}_{k=1}^{\\\\infty}\\\\)</span> in the spaces <span>\\\\(L^{q}=L^{q}((0,1),{\\\\upsilon})\\\\)</span>, <span>\\\\(q\\\\geq 1\\\\)</span>, on the interval <span>\\\\((0,1)\\\\)</span> with the weight <span>\\\\(\\\\upsilon(x)=x^{2}\\\\)</span>. We find an integral representation of this operator and study its norm in the spaces <span>\\\\(L^{q}\\\\)</span>, <span>\\\\(1\\\\leq q\\\\leq\\\\infty\\\\)</span>. The translation operator is applied to the study of Nikol’skii’s inequality between the uniform norm and the <span>\\\\(L^{q}\\\\)</span>-norm of polynomials in the system <span>\\\\(\\\\mathfrak{S}\\\\)</span>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0081543823060032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0081543823060032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们讨论了在空间 \(L^{q}=L^{q}((0. 1,{\upsilon})\(q\geq 1\) 上,由权重为 \(\upsilon}) 的函数体系 \(\mathfrak{S}=\{(\sin k\pi x)}/{(k\pi x)}\}_{k=1}^{\infty}) 生成的广义平移算子的性质、1),{\upsilon})/), \(q\geq 1\), on the interval \((0,1)/) with the weight \(\upsilon(x)=x^{2}/)。我们找到了这个算子的积分表示,并研究了它在(L^{q}\)、(1\leq q\leq\infty\)空间中的规范。我们将平移算子应用于研究尼克尔斯基(Nikol'skii)在系统 \(\mathfrak{S}\)中多项式的统一规范和 \(L^{q}\)规范之间的不等式。
A Generalized Translation Operator Generated by the Sinc Function on an Interval
We discuss the properties of the generalized translation operator generated by the system of functions \(\mathfrak{S}=\{{(\sin k\pi x)}/{(k\pi x)}\}_{k=1}^{\infty}\) in the spaces \(L^{q}=L^{q}((0,1),{\upsilon})\), \(q\geq 1\), on the interval \((0,1)\) with the weight \(\upsilon(x)=x^{2}\). We find an integral representation of this operator and study its norm in the spaces \(L^{q}\), \(1\leq q\leq\infty\). The translation operator is applied to the study of Nikol’skii’s inequality between the uniform norm and the \(L^{q}\)-norm of polynomials in the system \(\mathfrak{S}\).