SL-AV 全球大气模型半拉格朗日平流算法中的随机扰动

IF 0.5 4区 数学 Q4 MATHEMATICS, APPLIED
Kseniya A. Alipova, Vasiliy G. Mizyak, Mikhail A. Tolstykh, Gordey S. Goyman
{"title":"SL-AV 全球大气模型半拉格朗日平流算法中的随机扰动","authors":"Kseniya A. Alipova, Vasiliy G. Mizyak, Mikhail A. Tolstykh, Gordey S. Goyman","doi":"10.1515/rnam-2024-0001","DOIUrl":null,"url":null,"abstract":"An algorithm for stochastic perturbation of the semi-Lagrangian trajectories is implemented in the ensemble weather prediction system based on the global atmosphere model SL-AV20 with a horizontal resolution of approximately 20 km, 51 vertical levels, and Local Ensemble Transform Kalman Filter (LETKF). The combined use of methods for stochastic perturbation of trajectories and the parameters and tendencies of subgrid-scale processes parameterizations allows to generate ensembles with a larger spread compared to ensembles without stochastic perturbations of trajectories. An improvement in probabilistic estimates of the ensemble forecasts for various variables is shown. The comparison of two versions of ensemble prediction system is presented.","PeriodicalId":49585,"journal":{"name":"Russian Journal of Numerical Analysis and Mathematical Modelling","volume":"17 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic perturbations in the semi-Lagrangian advection algorithm of the SL-AV global atmosphere model\",\"authors\":\"Kseniya A. Alipova, Vasiliy G. Mizyak, Mikhail A. Tolstykh, Gordey S. Goyman\",\"doi\":\"10.1515/rnam-2024-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for stochastic perturbation of the semi-Lagrangian trajectories is implemented in the ensemble weather prediction system based on the global atmosphere model SL-AV20 with a horizontal resolution of approximately 20 km, 51 vertical levels, and Local Ensemble Transform Kalman Filter (LETKF). The combined use of methods for stochastic perturbation of trajectories and the parameters and tendencies of subgrid-scale processes parameterizations allows to generate ensembles with a larger spread compared to ensembles without stochastic perturbations of trajectories. An improvement in probabilistic estimates of the ensemble forecasts for various variables is shown. The comparison of two versions of ensemble prediction system is presented.\",\"PeriodicalId\":49585,\"journal\":{\"name\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Numerical Analysis and Mathematical Modelling\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/rnam-2024-0001\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Numerical Analysis and Mathematical Modelling","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2024-0001","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

半拉格朗日轨迹随机扰动算法是在基于全球大气模型 SL-AV20 的集合天气预报系统中实施的,该模型的水平分辨率约为 20 千米,垂直高度为 51 层,并采用了本地集合转换卡尔曼滤波器(LETKF)。结合使用轨迹随机扰动方法和子网格尺度过程参数化的参数和趋势,与没有轨迹随机扰动的集合相比,可以生成传播范围更大的集合。结果表明,对各种变量的集合预测的概率估计有所改进。对两个版本的集合预测系统进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic perturbations in the semi-Lagrangian advection algorithm of the SL-AV global atmosphere model
An algorithm for stochastic perturbation of the semi-Lagrangian trajectories is implemented in the ensemble weather prediction system based on the global atmosphere model SL-AV20 with a horizontal resolution of approximately 20 km, 51 vertical levels, and Local Ensemble Transform Kalman Filter (LETKF). The combined use of methods for stochastic perturbation of trajectories and the parameters and tendencies of subgrid-scale processes parameterizations allows to generate ensembles with a larger spread compared to ensembles without stochastic perturbations of trajectories. An improvement in probabilistic estimates of the ensemble forecasts for various variables is shown. The comparison of two versions of ensemble prediction system is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
16.70%
发文量
31
审稿时长
>12 weeks
期刊介绍: The Russian Journal of Numerical Analysis and Mathematical Modelling, published bimonthly, provides English translations of selected new original Russian papers on the theoretical aspects of numerical analysis and the application of mathematical methods to simulation and modelling. The editorial board, consisting of the most prominent Russian scientists in numerical analysis and mathematical modelling, selects papers on the basis of their high scientific standard, innovative approach and topical interest. Topics: -numerical analysis- numerical linear algebra- finite element methods for PDEs- iterative methods- Monte-Carlo methods- mathematical modelling and numerical simulation in geophysical hydrodynamics, immunology and medicine, fluid mechanics and electrodynamics, geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信