给定度数多项式矩阵的行或列补全

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Agurtzane Amparan, Itziar Baragaña, Silvia Marcaida, Alicia Roca
{"title":"给定度数多项式矩阵的行或列补全","authors":"Agurtzane Amparan, Itziar Baragaña, Silvia Marcaida, Alicia Roca","doi":"10.1137/23m1564547","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 478-503, March 2024. <br/> Abstract. We solve the problem of characterizing the existence of a polynomial matrix of fixed degree when its eigenstructure (or part of it) and some of its rows (columns) are prescribed. More specifically, we present a solution to the row (column) completion problem of a polynomial matrix of given degree under different prescribed invariants: the whole eigenstructure, all of it but the row (column) minimal indices, and the finite and/or infinite structures. Moreover, we characterize the existence of a polynomial matrix with prescribed degree and eigenstructure over an arbitrary field.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"84 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Row or Column Completion of Polynomial Matrices of Given Degree\",\"authors\":\"Agurtzane Amparan, Itziar Baragaña, Silvia Marcaida, Alicia Roca\",\"doi\":\"10.1137/23m1564547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 478-503, March 2024. <br/> Abstract. We solve the problem of characterizing the existence of a polynomial matrix of fixed degree when its eigenstructure (or part of it) and some of its rows (columns) are prescribed. More specifically, we present a solution to the row (column) completion problem of a polynomial matrix of given degree under different prescribed invariants: the whole eigenstructure, all of it but the row (column) minimal indices, and the finite and/or infinite structures. Moreover, we characterize the existence of a polynomial matrix with prescribed degree and eigenstructure over an arbitrary field.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1564547\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1564547","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 1 期,第 478-503 页,2024 年 3 月。 摘要我们解决了当一个固定阶数的多项式矩阵的特征结构(或部分特征结构)及其部分行(列)被规定时,该矩阵的存在性问题。更具体地说,我们提出了给定度数的多项式矩阵在不同规定不变式下行(列)补全问题的解决方案:整个特征结构、除行(列)最小索引外的所有特征结构以及有限和/或无限结构。此外,我们还描述了任意域上具有规定度和特征结构的多项式矩阵的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Row or Column Completion of Polynomial Matrices of Given Degree
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 478-503, March 2024.
Abstract. We solve the problem of characterizing the existence of a polynomial matrix of fixed degree when its eigenstructure (or part of it) and some of its rows (columns) are prescribed. More specifically, we present a solution to the row (column) completion problem of a polynomial matrix of given degree under different prescribed invariants: the whole eigenstructure, all of it but the row (column) minimal indices, and the finite and/or infinite structures. Moreover, we characterize the existence of a polynomial matrix with prescribed degree and eigenstructure over an arbitrary field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信