{"title":"带有多孔挡板的矩形容器中的动态荡流","authors":"M. R. Turner","doi":"10.1007/s10665-024-10333-7","DOIUrl":null,"url":null,"abstract":"<p>The damping efficiency of vertical porous baffles is investigated for a dynamically coupled fluid-vessel system. The system comprises of a two-dimensional vessel, with a rectangular cross-section, partially filled with fluid, undergoing rectilinear motions with porous baffles obstructing the fluid motion. The baffles pierce the surface of the fluid, thus the problem can be considered as separate fluid filled regions of the vessel, connected by infinitely thin porous baffles, at which transmission conditions based on Darcy’s law are applied. The fluid is assumed to be inviscid, incompressible and irrotational such that the flow in each region is governed by a velocity potential. The application of Darcy’s law at the baffles is significant as it makes the system non-conservative, and thus the resulting characteristic equation for the normal modes leads to damped modes coupled to the moving vessel. Numerical evaluations of the characteristic equation show that the lowest frequency mode typically has the smallest decay rate, and hence will persist longest in an experimental setup. The maximum decay rate of the lowest frequency mode occurs when the baffles split the vessel into identically sized regions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic sloshing in a rectangular vessel with porous baffles\",\"authors\":\"M. R. Turner\",\"doi\":\"10.1007/s10665-024-10333-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The damping efficiency of vertical porous baffles is investigated for a dynamically coupled fluid-vessel system. The system comprises of a two-dimensional vessel, with a rectangular cross-section, partially filled with fluid, undergoing rectilinear motions with porous baffles obstructing the fluid motion. The baffles pierce the surface of the fluid, thus the problem can be considered as separate fluid filled regions of the vessel, connected by infinitely thin porous baffles, at which transmission conditions based on Darcy’s law are applied. The fluid is assumed to be inviscid, incompressible and irrotational such that the flow in each region is governed by a velocity potential. The application of Darcy’s law at the baffles is significant as it makes the system non-conservative, and thus the resulting characteristic equation for the normal modes leads to damped modes coupled to the moving vessel. Numerical evaluations of the characteristic equation show that the lowest frequency mode typically has the smallest decay rate, and hence will persist longest in an experimental setup. The maximum decay rate of the lowest frequency mode occurs when the baffles split the vessel into identically sized regions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-024-10333-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10333-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic sloshing in a rectangular vessel with porous baffles
The damping efficiency of vertical porous baffles is investigated for a dynamically coupled fluid-vessel system. The system comprises of a two-dimensional vessel, with a rectangular cross-section, partially filled with fluid, undergoing rectilinear motions with porous baffles obstructing the fluid motion. The baffles pierce the surface of the fluid, thus the problem can be considered as separate fluid filled regions of the vessel, connected by infinitely thin porous baffles, at which transmission conditions based on Darcy’s law are applied. The fluid is assumed to be inviscid, incompressible and irrotational such that the flow in each region is governed by a velocity potential. The application of Darcy’s law at the baffles is significant as it makes the system non-conservative, and thus the resulting characteristic equation for the normal modes leads to damped modes coupled to the moving vessel. Numerical evaluations of the characteristic equation show that the lowest frequency mode typically has the smallest decay rate, and hence will persist longest in an experimental setup. The maximum decay rate of the lowest frequency mode occurs when the baffles split the vessel into identically sized regions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.