II 型广义混合普查竞争风险数据下的倒纳达拉贾-哈格希分布的统计推断

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tahani A. Abushal, Areej M. AL-Zaydi
{"title":"II 型广义混合普查竞争风险数据下的倒纳达拉贾-哈格希分布的统计推断","authors":"Tahani A. Abushal, Areej M. AL-Zaydi","doi":"10.1007/s10665-023-10331-1","DOIUrl":null,"url":null,"abstract":"<p>Tahir et al. (J Stat Comput Simul 88(14):2775–2798, 2018) introduced the inverse Nadarajah–Haghighi distribution (INHD) and demonstrated its ability to model positive real data sets with decreasing and upside-down bathtub hazard rate shapes. This article focuses on the inference of unknown parameters using a generalized Type-II hybrid censoring scheme (GT-II HCS) for the INHD in the presence of competing risks. The maximum likelihood (ML) and Bayes approaches are used to estimate the model parameters. Based on the squared error loss function, we compute Bayes estimates using Markov Chain Monte Carlo (MCMC) by applying Metropolis-Hasting (M-H) algorithm. Furthermore, the asymptotic confidence intervals, bootstrap confidence intervals (BCIs) and the highest posterior density (HPD) credible intervals are constructed. Using real data sets and simulation studies, we examined the introduced methods of inference with different sample sizes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical inference of inverted Nadarajah–Haghighi distribution under type-II generalized hybrid censoring competing risks data\",\"authors\":\"Tahani A. Abushal, Areej M. AL-Zaydi\",\"doi\":\"10.1007/s10665-023-10331-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tahir et al. (J Stat Comput Simul 88(14):2775–2798, 2018) introduced the inverse Nadarajah–Haghighi distribution (INHD) and demonstrated its ability to model positive real data sets with decreasing and upside-down bathtub hazard rate shapes. This article focuses on the inference of unknown parameters using a generalized Type-II hybrid censoring scheme (GT-II HCS) for the INHD in the presence of competing risks. The maximum likelihood (ML) and Bayes approaches are used to estimate the model parameters. Based on the squared error loss function, we compute Bayes estimates using Markov Chain Monte Carlo (MCMC) by applying Metropolis-Hasting (M-H) algorithm. Furthermore, the asymptotic confidence intervals, bootstrap confidence intervals (BCIs) and the highest posterior density (HPD) credible intervals are constructed. Using real data sets and simulation studies, we examined the introduced methods of inference with different sample sizes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10331-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10331-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Tahir 等人(J Stat Comput Simul 88(14):2775-2798, 2018)介绍了逆 Nadarajah-Haghighi 分布(INHD),并展示了其对具有递减和倒置浴缸危险率形状的正向真实数据集建模的能力。本文重点讨论了在存在竞争风险的情况下,使用广义 II 型混合删减方案(GT-II HCS)对 INHD 的未知参数进行推断。最大似然法(ML)和贝叶斯法用于估计模型参数。根据平方误差损失函数,我们采用 Metropolis-Hasting(M-H)算法,使用马尔可夫链蒙特卡罗(MCMC)计算贝叶斯估计值。此外,我们还构建了渐近置信区间、自举法置信区间(BCIs)和最高后验密度可信区间(HPD)。通过使用真实数据集和模拟研究,我们检验了在不同样本量下的推断方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Statistical inference of inverted Nadarajah–Haghighi distribution under type-II generalized hybrid censoring competing risks data

Statistical inference of inverted Nadarajah–Haghighi distribution under type-II generalized hybrid censoring competing risks data

Tahir et al. (J Stat Comput Simul 88(14):2775–2798, 2018) introduced the inverse Nadarajah–Haghighi distribution (INHD) and demonstrated its ability to model positive real data sets with decreasing and upside-down bathtub hazard rate shapes. This article focuses on the inference of unknown parameters using a generalized Type-II hybrid censoring scheme (GT-II HCS) for the INHD in the presence of competing risks. The maximum likelihood (ML) and Bayes approaches are used to estimate the model parameters. Based on the squared error loss function, we compute Bayes estimates using Markov Chain Monte Carlo (MCMC) by applying Metropolis-Hasting (M-H) algorithm. Furthermore, the asymptotic confidence intervals, bootstrap confidence intervals (BCIs) and the highest posterior density (HPD) credible intervals are constructed. Using real data sets and simulation studies, we examined the introduced methods of inference with different sample sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信