{"title":"双矩阵的奇异值分解及其在大脑游波识别中的应用","authors":"Tong Wei, Weiyang Ding, Yimin Wei","doi":"10.1137/23m1556642","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 634-660, March 2024. <br/> Abstract. Matrix factorizations in dual number algebra, a hypercomplex number system, have been applied to kinematics, spatial mechanisms, and other fields recently. We develop an approach to identify spatiotemporal patterns in the brain such as traveling waves using the singular value decomposition (SVD) of dual matrices in this paper. Theoretically, we propose the compact dual singular value decomposition (CDSVD) of dual complex matrices with explicit expressions as well as a necessary and sufficient condition for its existence. Furthermore, based on the CDSVD, we report on the optimal solution to the best rank-[math] approximation under a newly defined quasi-metric in the dual complex number system. The CDSVD is also related to the dual Moore–Penrose generalized inverse. Numerically, comparisons with other available algorithms are conducted, which indicate less computational costs of our proposed CDSVD. In addition, the infinitesimal part of the CDSVD can identify the true rank of the original matrix from the noise-added matrix, but the classical SVD cannot. Next, we employ experiments on simulated time-series data and a road monitoring video to demonstrate the beneficial effect of the infinitesimal parts of dual matrices in spatiotemporal pattern identification. Finally, we apply this approach to the large-scale brain functional magnetic resonance imaging data, identify three kinds of traveling waves, and further validate the consistency between our analytical results and the current knowledge of cerebral cortex function.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"23 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular Value Decomposition of Dual Matrices and its Application to Traveling Wave Identification in the Brain\",\"authors\":\"Tong Wei, Weiyang Ding, Yimin Wei\",\"doi\":\"10.1137/23m1556642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 634-660, March 2024. <br/> Abstract. Matrix factorizations in dual number algebra, a hypercomplex number system, have been applied to kinematics, spatial mechanisms, and other fields recently. We develop an approach to identify spatiotemporal patterns in the brain such as traveling waves using the singular value decomposition (SVD) of dual matrices in this paper. Theoretically, we propose the compact dual singular value decomposition (CDSVD) of dual complex matrices with explicit expressions as well as a necessary and sufficient condition for its existence. Furthermore, based on the CDSVD, we report on the optimal solution to the best rank-[math] approximation under a newly defined quasi-metric in the dual complex number system. The CDSVD is also related to the dual Moore–Penrose generalized inverse. Numerically, comparisons with other available algorithms are conducted, which indicate less computational costs of our proposed CDSVD. In addition, the infinitesimal part of the CDSVD can identify the true rank of the original matrix from the noise-added matrix, but the classical SVD cannot. Next, we employ experiments on simulated time-series data and a road monitoring video to demonstrate the beneficial effect of the infinitesimal parts of dual matrices in spatiotemporal pattern identification. Finally, we apply this approach to the large-scale brain functional magnetic resonance imaging data, identify three kinds of traveling waves, and further validate the consistency between our analytical results and the current knowledge of cerebral cortex function.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1556642\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1556642","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Singular Value Decomposition of Dual Matrices and its Application to Traveling Wave Identification in the Brain
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 634-660, March 2024. Abstract. Matrix factorizations in dual number algebra, a hypercomplex number system, have been applied to kinematics, spatial mechanisms, and other fields recently. We develop an approach to identify spatiotemporal patterns in the brain such as traveling waves using the singular value decomposition (SVD) of dual matrices in this paper. Theoretically, we propose the compact dual singular value decomposition (CDSVD) of dual complex matrices with explicit expressions as well as a necessary and sufficient condition for its existence. Furthermore, based on the CDSVD, we report on the optimal solution to the best rank-[math] approximation under a newly defined quasi-metric in the dual complex number system. The CDSVD is also related to the dual Moore–Penrose generalized inverse. Numerically, comparisons with other available algorithms are conducted, which indicate less computational costs of our proposed CDSVD. In addition, the infinitesimal part of the CDSVD can identify the true rank of the original matrix from the noise-added matrix, but the classical SVD cannot. Next, we employ experiments on simulated time-series data and a road monitoring video to demonstrate the beneficial effect of the infinitesimal parts of dual matrices in spatiotemporal pattern identification. Finally, we apply this approach to the large-scale brain functional magnetic resonance imaging data, identify three kinds of traveling waves, and further validate the consistency between our analytical results and the current knowledge of cerebral cortex function.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.