通过随机化加速计算[数学]的克雷洛夫子空间方法

IF 1.5 2区 数学 Q2 MATHEMATICS, APPLIED
Alice Cortinovis, Daniel Kressner, Yuji Nakatsukasa
{"title":"通过随机化加速计算[数学]的克雷洛夫子空间方法","authors":"Alice Cortinovis, Daniel Kressner, Yuji Nakatsukasa","doi":"10.1137/22m1543458","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 619-633, March 2024. <br/> Abstract. This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov subspace. Such compression is usually computed by forming an orthonormal basis of the Krylov subspace using the Arnoldi method. In this work, we propose to compute (nonorthonormal) bases in a faster way and to use a fast randomized algorithm for least-squares problems to compute the compression of A onto the Krylov subspace. We present some numerical examples which show that our algorithms can be faster than the standard Arnoldi method while achieving comparable accuracy.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":"17 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Speeding Up Krylov Subspace Methods for Computing [math] via Randomization\",\"authors\":\"Alice Cortinovis, Daniel Kressner, Yuji Nakatsukasa\",\"doi\":\"10.1137/22m1543458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 619-633, March 2024. <br/> Abstract. This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov subspace. Such compression is usually computed by forming an orthonormal basis of the Krylov subspace using the Arnoldi method. In this work, we propose to compute (nonorthonormal) bases in a faster way and to use a fast randomized algorithm for least-squares problems to compute the compression of A onto the Krylov subspace. We present some numerical examples which show that our algorithms can be faster than the standard Arnoldi method while achieving comparable accuracy.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1543458\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1543458","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 矩阵分析与应用期刊》,第 45 卷,第 1 期,第 619-633 页,2024 年 3 月。 摘要。这项工作涉及矩阵函数 f(A) 对向量 b 的作用的计算,例如矩阵指数或矩阵平方根。对于一般矩阵 A,可以通过计算 A 对合适的 Krylov 子空间的压缩来实现。这种压缩通常是通过使用 Arnoldi 方法形成 Krylov 子空间的正交基来计算的。在这项工作中,我们建议以更快的方式计算(非正态)基,并使用最小二乘问题的快速随机算法来计算 A 到 Krylov 子空间的压缩。我们给出了一些数值示例,表明我们的算法比标准阿诺德方法更快,同时精度相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Speeding Up Krylov Subspace Methods for Computing [math] via Randomization
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 619-633, March 2024.
Abstract. This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov subspace. Such compression is usually computed by forming an orthonormal basis of the Krylov subspace using the Arnoldi method. In this work, we propose to compute (nonorthonormal) bases in a faster way and to use a fast randomized algorithm for least-squares problems to compute the compression of A onto the Krylov subspace. We present some numerical examples which show that our algorithms can be faster than the standard Arnoldi method while achieving comparable accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
6.70%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信