{"title":"用于从水溶液中还原-吸附 Cr(VI) 的铁包覆 Schwertmannite 的合成、表征和应用","authors":"","doi":"10.1007/s41742-024-00570-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Previous studies have demonstrated that schwertmannite (Sch) exhibits good adsorption performance for Cr(VI). In order to further enhance the ability to remove Cr(VI), this study prepared a novel composite (Fe(II)@Sch) by embedding ferrous iron (Fe(II)) on Sch. The adsorption performance of Cr(VI) on Fe(II)@Sch was investigated by batch adsorption experiments, and a possible removal mechanism was proposed through characterization analysis. The results showed that the optimal Fe/Sch ratio for Fe(II)@Sch preparation was 120 mmol/g. Fe(II)@Sch enabled efficient and rapid adsorption of Cr(VI). The maximum Cr(VI) adsorption capacity of Fe(II)@Sch was 4.17 mmol/g at pH 6.0, which was 69% higher when compared to Sch, and 81% of the maximum adsorption could be achieved within 1 min. The embedding of Fe(II) led to a decrease in the particle size and an increase in the specific surface area (SSA) of Sch, which could be considered favorable for adsorption. After four repeated cycles 93.3% of the original Cr(VI) adsorption capacity was still maintained. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis showed that the interaction between Fe(II)@Sch and Cr(VI) followed an adsorption–reduction mechanism. The results demonstrated that Fe(II)@Sch could be used as an effective material for removing Cr(VI) from wastewater.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/41742_2024_570_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, Characterization and Application of Ferrous Iron-Embedded Schwertmannite for Cr(VI) Reduction–Adsorption from Aqueous Solutions\",\"authors\":\"\",\"doi\":\"10.1007/s41742-024-00570-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Previous studies have demonstrated that schwertmannite (Sch) exhibits good adsorption performance for Cr(VI). In order to further enhance the ability to remove Cr(VI), this study prepared a novel composite (Fe(II)@Sch) by embedding ferrous iron (Fe(II)) on Sch. The adsorption performance of Cr(VI) on Fe(II)@Sch was investigated by batch adsorption experiments, and a possible removal mechanism was proposed through characterization analysis. The results showed that the optimal Fe/Sch ratio for Fe(II)@Sch preparation was 120 mmol/g. Fe(II)@Sch enabled efficient and rapid adsorption of Cr(VI). The maximum Cr(VI) adsorption capacity of Fe(II)@Sch was 4.17 mmol/g at pH 6.0, which was 69% higher when compared to Sch, and 81% of the maximum adsorption could be achieved within 1 min. The embedding of Fe(II) led to a decrease in the particle size and an increase in the specific surface area (SSA) of Sch, which could be considered favorable for adsorption. After four repeated cycles 93.3% of the original Cr(VI) adsorption capacity was still maintained. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis showed that the interaction between Fe(II)@Sch and Cr(VI) followed an adsorption–reduction mechanism. The results demonstrated that Fe(II)@Sch could be used as an effective material for removing Cr(VI) from wastewater.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\\\"\\\" src=\\\"https://static-content.springer.com/image/MediaObjects/41742_2024_570_Figa_HTML.png\\\"/> </span> </span></p> </span>\",\"PeriodicalId\":14121,\"journal\":{\"name\":\"International Journal of Environmental Research\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s41742-024-00570-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-024-00570-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Synthesis, Characterization and Application of Ferrous Iron-Embedded Schwertmannite for Cr(VI) Reduction–Adsorption from Aqueous Solutions
Abstract
Previous studies have demonstrated that schwertmannite (Sch) exhibits good adsorption performance for Cr(VI). In order to further enhance the ability to remove Cr(VI), this study prepared a novel composite (Fe(II)@Sch) by embedding ferrous iron (Fe(II)) on Sch. The adsorption performance of Cr(VI) on Fe(II)@Sch was investigated by batch adsorption experiments, and a possible removal mechanism was proposed through characterization analysis. The results showed that the optimal Fe/Sch ratio for Fe(II)@Sch preparation was 120 mmol/g. Fe(II)@Sch enabled efficient and rapid adsorption of Cr(VI). The maximum Cr(VI) adsorption capacity of Fe(II)@Sch was 4.17 mmol/g at pH 6.0, which was 69% higher when compared to Sch, and 81% of the maximum adsorption could be achieved within 1 min. The embedding of Fe(II) led to a decrease in the particle size and an increase in the specific surface area (SSA) of Sch, which could be considered favorable for adsorption. After four repeated cycles 93.3% of the original Cr(VI) adsorption capacity was still maintained. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis showed that the interaction between Fe(II)@Sch and Cr(VI) followed an adsorption–reduction mechanism. The results demonstrated that Fe(II)@Sch could be used as an effective material for removing Cr(VI) from wastewater.
期刊介绍:
International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.