{"title":"高不确定性大流量情况下的调度","authors":"Rami Atar, Eyal Castiel, Yonatan Shadmi","doi":"10.1287/moor.2022.0100","DOIUrl":null,"url":null,"abstract":"We propose a model uncertainty approach to heavy traffic asymptotics that allows for a high level of uncertainty. That is, the uncertainty classes of underlying distributions accommodate disturbances that are of order 1 at the usual diffusion scale as opposed to asymptotically vanishing disturbances studied previously in relation to heavy traffic. A main advantage of the approach is that the invariance principle underlying diffusion limits makes it possible to define uncertainty classes in terms of the first two moments only. The model we consider is a single-server queue with multiple job types. The problem is formulated as a zero sum stochastic game played between the system controller, who determines scheduling and attempts to minimize an expected linear holding cost, and an adversary, who dynamically controls the service time distributions of arriving jobs and attempts to maximize the cost. The heavy traffic asymptotics of the game are fully solved. It is shown that an asymptotically optimal policy for the system controller is to prioritize according to an index rule, and for the adversary, it is to select distributions based on the system’s current workload. The workload-to-distribution feedback mapping is determined by a Hamilton–Jacobi–Bellman equation, which also characterizes the game’s limit value. Unlike in the vast majority of results in the heavy traffic theory and as a direct consequence of the diffusive size disturbances, the limiting dynamics under asymptotically optimal play are captured by a stochastic differential equation where both the drift and the diffusion coefficients may be discontinuous.Funding: R. Atar is supported by the Israeli Science Foundation [Grant 1035/20].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling in the High-Uncertainty Heavy Traffic Regime\",\"authors\":\"Rami Atar, Eyal Castiel, Yonatan Shadmi\",\"doi\":\"10.1287/moor.2022.0100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a model uncertainty approach to heavy traffic asymptotics that allows for a high level of uncertainty. That is, the uncertainty classes of underlying distributions accommodate disturbances that are of order 1 at the usual diffusion scale as opposed to asymptotically vanishing disturbances studied previously in relation to heavy traffic. A main advantage of the approach is that the invariance principle underlying diffusion limits makes it possible to define uncertainty classes in terms of the first two moments only. The model we consider is a single-server queue with multiple job types. The problem is formulated as a zero sum stochastic game played between the system controller, who determines scheduling and attempts to minimize an expected linear holding cost, and an adversary, who dynamically controls the service time distributions of arriving jobs and attempts to maximize the cost. The heavy traffic asymptotics of the game are fully solved. It is shown that an asymptotically optimal policy for the system controller is to prioritize according to an index rule, and for the adversary, it is to select distributions based on the system’s current workload. The workload-to-distribution feedback mapping is determined by a Hamilton–Jacobi–Bellman equation, which also characterizes the game’s limit value. Unlike in the vast majority of results in the heavy traffic theory and as a direct consequence of the diffusive size disturbances, the limiting dynamics under asymptotically optimal play are captured by a stochastic differential equation where both the drift and the diffusion coefficients may be discontinuous.Funding: R. Atar is supported by the Israeli Science Foundation [Grant 1035/20].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2022.0100\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0100","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Scheduling in the High-Uncertainty Heavy Traffic Regime
We propose a model uncertainty approach to heavy traffic asymptotics that allows for a high level of uncertainty. That is, the uncertainty classes of underlying distributions accommodate disturbances that are of order 1 at the usual diffusion scale as opposed to asymptotically vanishing disturbances studied previously in relation to heavy traffic. A main advantage of the approach is that the invariance principle underlying diffusion limits makes it possible to define uncertainty classes in terms of the first two moments only. The model we consider is a single-server queue with multiple job types. The problem is formulated as a zero sum stochastic game played between the system controller, who determines scheduling and attempts to minimize an expected linear holding cost, and an adversary, who dynamically controls the service time distributions of arriving jobs and attempts to maximize the cost. The heavy traffic asymptotics of the game are fully solved. It is shown that an asymptotically optimal policy for the system controller is to prioritize according to an index rule, and for the adversary, it is to select distributions based on the system’s current workload. The workload-to-distribution feedback mapping is determined by a Hamilton–Jacobi–Bellman equation, which also characterizes the game’s limit value. Unlike in the vast majority of results in the heavy traffic theory and as a direct consequence of the diffusive size disturbances, the limiting dynamics under asymptotically optimal play are captured by a stochastic differential equation where both the drift and the diffusion coefficients may be discontinuous.Funding: R. Atar is supported by the Israeli Science Foundation [Grant 1035/20].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.