Ivan Oyege, John Wasswa, Maruthi Sridhar Balaji Bhaskar, Peter Nkedi-Kizza, Gabriel N. Kasozi
{"title":"选定热带土壤中毒死蜱的混合溶剂吸附和湿度-时间依赖性降解","authors":"Ivan Oyege, John Wasswa, Maruthi Sridhar Balaji Bhaskar, Peter Nkedi-Kizza, Gabriel N. Kasozi","doi":"10.1007/s41742-023-00564-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The adsorption to container walls, syringes, injectors and analytical columns by strongly hydrophobic organics in aqueous media presents challenges in accurate estimation of sorption parameters of chemicals such as chlorpyrifos (CPF). To minimize this phenomenon, mixed solvents and Teflon-lined centrifuge tubes were used. The study aimed at investigating the sorption kinetics and equilibrium parameters in tropical soils. In addition, the persistence and leaching potential of CPF under submerged and field capacity moisture conditions were studied. Batch sorption studies utilizing the Solvophobic theory revealed time-dependent kinetics on Teflon container walls, where CPF sorption diminished exponentially with increasing methanol fraction. Sorption parameters for soils showed diverse kinetics and equilibrium times across soils and methanol fractions. The Solvophobic theory was used to predict the soil-sorption coefficients <i>K</i><sup>W</sup> and <i>K</i><sub>OC</sub>. Chlorpyrifos sorption exponentially decreased with increasing methanol fraction, reaching equilibrium in 4–8 h. Container wall <i>K</i><sup>W</sup> measured was 0.19 mL/g, while soil <i>K</i><sup>W</sup> values ranged from 46.53 to 56.71 mL/g. Chlorpyrifos <i>K</i><sub>OC</sub> values varied from 1551 to 1890. The degradation studies under submerged and field capacity conditions indicated microbial and abiotic influences on chlorpyrifos persistence, resulting in half-lives ranging from 18 to 52 days in submerged conditions and 18 to 33 days at field capacity. The Groundwater Ubiquity Index suggested no leaching potential in the examined soils. This study represents the first investigation of chlorpyrifos sorption kinetics only Teflon-lined centrifuge tube container walls, revealing that chlorpyrifos sorption is not instantaneous but rather time-dependent. Future analyses should explore CPF's environmental fate, considering microbial interactions and organic matter content, to contribute to a comprehensive understanding and develop sustainable pest management strategies in tropical regions.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":"6 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed-Solvent Sorption and Moisture-Regime-Dependent Degradation of Chlorpyrifos in Selected Tropical Soils\",\"authors\":\"Ivan Oyege, John Wasswa, Maruthi Sridhar Balaji Bhaskar, Peter Nkedi-Kizza, Gabriel N. Kasozi\",\"doi\":\"10.1007/s41742-023-00564-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The adsorption to container walls, syringes, injectors and analytical columns by strongly hydrophobic organics in aqueous media presents challenges in accurate estimation of sorption parameters of chemicals such as chlorpyrifos (CPF). To minimize this phenomenon, mixed solvents and Teflon-lined centrifuge tubes were used. The study aimed at investigating the sorption kinetics and equilibrium parameters in tropical soils. In addition, the persistence and leaching potential of CPF under submerged and field capacity moisture conditions were studied. Batch sorption studies utilizing the Solvophobic theory revealed time-dependent kinetics on Teflon container walls, where CPF sorption diminished exponentially with increasing methanol fraction. Sorption parameters for soils showed diverse kinetics and equilibrium times across soils and methanol fractions. The Solvophobic theory was used to predict the soil-sorption coefficients <i>K</i><sup>W</sup> and <i>K</i><sub>OC</sub>. Chlorpyrifos sorption exponentially decreased with increasing methanol fraction, reaching equilibrium in 4–8 h. Container wall <i>K</i><sup>W</sup> measured was 0.19 mL/g, while soil <i>K</i><sup>W</sup> values ranged from 46.53 to 56.71 mL/g. Chlorpyrifos <i>K</i><sub>OC</sub> values varied from 1551 to 1890. The degradation studies under submerged and field capacity conditions indicated microbial and abiotic influences on chlorpyrifos persistence, resulting in half-lives ranging from 18 to 52 days in submerged conditions and 18 to 33 days at field capacity. The Groundwater Ubiquity Index suggested no leaching potential in the examined soils. This study represents the first investigation of chlorpyrifos sorption kinetics only Teflon-lined centrifuge tube container walls, revealing that chlorpyrifos sorption is not instantaneous but rather time-dependent. Future analyses should explore CPF's environmental fate, considering microbial interactions and organic matter content, to contribute to a comprehensive understanding and develop sustainable pest management strategies in tropical regions.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":14121,\"journal\":{\"name\":\"International Journal of Environmental Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s41742-023-00564-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-023-00564-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mixed-Solvent Sorption and Moisture-Regime-Dependent Degradation of Chlorpyrifos in Selected Tropical Soils
Abstract
The adsorption to container walls, syringes, injectors and analytical columns by strongly hydrophobic organics in aqueous media presents challenges in accurate estimation of sorption parameters of chemicals such as chlorpyrifos (CPF). To minimize this phenomenon, mixed solvents and Teflon-lined centrifuge tubes were used. The study aimed at investigating the sorption kinetics and equilibrium parameters in tropical soils. In addition, the persistence and leaching potential of CPF under submerged and field capacity moisture conditions were studied. Batch sorption studies utilizing the Solvophobic theory revealed time-dependent kinetics on Teflon container walls, where CPF sorption diminished exponentially with increasing methanol fraction. Sorption parameters for soils showed diverse kinetics and equilibrium times across soils and methanol fractions. The Solvophobic theory was used to predict the soil-sorption coefficients KW and KOC. Chlorpyrifos sorption exponentially decreased with increasing methanol fraction, reaching equilibrium in 4–8 h. Container wall KW measured was 0.19 mL/g, while soil KW values ranged from 46.53 to 56.71 mL/g. Chlorpyrifos KOC values varied from 1551 to 1890. The degradation studies under submerged and field capacity conditions indicated microbial and abiotic influences on chlorpyrifos persistence, resulting in half-lives ranging from 18 to 52 days in submerged conditions and 18 to 33 days at field capacity. The Groundwater Ubiquity Index suggested no leaching potential in the examined soils. This study represents the first investigation of chlorpyrifos sorption kinetics only Teflon-lined centrifuge tube container walls, revealing that chlorpyrifos sorption is not instantaneous but rather time-dependent. Future analyses should explore CPF's environmental fate, considering microbial interactions and organic matter content, to contribute to a comprehensive understanding and develop sustainable pest management strategies in tropical regions.
期刊介绍:
International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.