{"title":"用于动态遮阳条件下光伏系统最大功率跟踪的新型自适应授粉算法","authors":"Balmukund Kumar, Amitesh Kumar","doi":"10.1007/s40998-024-00696-z","DOIUrl":null,"url":null,"abstract":"<p>Maximum power point (MPP) technique in photovoltaic (PV) systems implements a tracking controller, which is utilized to optimize the energy production under variable atmospheric conditions. The tracking process becomes more difficult due to appearance of many peaks owing to partial shading conditions. Although conventional and soft computing technologies are frequently used to solve MPP tracking issues, their performance is constrained by the fixed step size of conventional methods. However, once soft computing methods reach a certain MPP, they are constrained by a lack of randomness. The novel adaptive flower pollination algorithm (AFPA) optimization technique proposed in this work, proceeds with global and local searching in a single step, which is very crucial for the success of the MPP tracking with this method. The robustness of the approach is examined by conducting zero, weak, moderate, and strong shading patterns to a complete performance assessment via simulation, and that performance is compared with traditional flower pollination algorithm (FPA) and particle swarm optimization (PSO) techniques. This newly proposed method has the following advantages over the conventional FPA: a) risk of failure is zero; b) oscillation of power, voltage, and current across the load is minimized; c) produced energy is increased by 0.5 to 2.5% with respect to FPA; d) MPP is tracked smoothly and e) reduced MPP tracking time by average 45%. This advantage is especially noticeable in the dynamic variation of the shading patterns.</p>","PeriodicalId":49064,"journal":{"name":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","volume":"1 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Adaptive Flower Pollination Algorithm for Maximum Power Tracking of Photovoltaic Systems Under Dynamic Shading Conditions\",\"authors\":\"Balmukund Kumar, Amitesh Kumar\",\"doi\":\"10.1007/s40998-024-00696-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maximum power point (MPP) technique in photovoltaic (PV) systems implements a tracking controller, which is utilized to optimize the energy production under variable atmospheric conditions. The tracking process becomes more difficult due to appearance of many peaks owing to partial shading conditions. Although conventional and soft computing technologies are frequently used to solve MPP tracking issues, their performance is constrained by the fixed step size of conventional methods. However, once soft computing methods reach a certain MPP, they are constrained by a lack of randomness. The novel adaptive flower pollination algorithm (AFPA) optimization technique proposed in this work, proceeds with global and local searching in a single step, which is very crucial for the success of the MPP tracking with this method. The robustness of the approach is examined by conducting zero, weak, moderate, and strong shading patterns to a complete performance assessment via simulation, and that performance is compared with traditional flower pollination algorithm (FPA) and particle swarm optimization (PSO) techniques. This newly proposed method has the following advantages over the conventional FPA: a) risk of failure is zero; b) oscillation of power, voltage, and current across the load is minimized; c) produced energy is increased by 0.5 to 2.5% with respect to FPA; d) MPP is tracked smoothly and e) reduced MPP tracking time by average 45%. This advantage is especially noticeable in the dynamic variation of the shading patterns.</p>\",\"PeriodicalId\":49064,\"journal\":{\"name\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology-Transactions of Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00696-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology-Transactions of Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00696-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Adaptive Flower Pollination Algorithm for Maximum Power Tracking of Photovoltaic Systems Under Dynamic Shading Conditions
Maximum power point (MPP) technique in photovoltaic (PV) systems implements a tracking controller, which is utilized to optimize the energy production under variable atmospheric conditions. The tracking process becomes more difficult due to appearance of many peaks owing to partial shading conditions. Although conventional and soft computing technologies are frequently used to solve MPP tracking issues, their performance is constrained by the fixed step size of conventional methods. However, once soft computing methods reach a certain MPP, they are constrained by a lack of randomness. The novel adaptive flower pollination algorithm (AFPA) optimization technique proposed in this work, proceeds with global and local searching in a single step, which is very crucial for the success of the MPP tracking with this method. The robustness of the approach is examined by conducting zero, weak, moderate, and strong shading patterns to a complete performance assessment via simulation, and that performance is compared with traditional flower pollination algorithm (FPA) and particle swarm optimization (PSO) techniques. This newly proposed method has the following advantages over the conventional FPA: a) risk of failure is zero; b) oscillation of power, voltage, and current across the load is minimized; c) produced energy is increased by 0.5 to 2.5% with respect to FPA; d) MPP is tracked smoothly and e) reduced MPP tracking time by average 45%. This advantage is especially noticeable in the dynamic variation of the shading patterns.
期刊介绍:
Transactions of Electrical Engineering is to foster the growth of scientific research in all branches of electrical engineering and its related grounds and to provide a medium by means of which the fruits of these researches may be brought to the attentionof the world’s scientific communities.
The journal has the focus on the frontier topics in the theoretical, mathematical, numerical, experimental and scientific developments in electrical engineering as well
as applications of established techniques to new domains in various electical engineering disciplines such as:
Bio electric, Bio mechanics, Bio instrument, Microwaves, Wave Propagation, Communication Theory, Channel Estimation, radar & sonar system, Signal Processing, image processing, Artificial Neural Networks, Data Mining and Machine Learning, Fuzzy Logic and Systems, Fuzzy Control, Optimal & Robust ControlNavigation & Estimation Theory, Power Electronics & Drives, Power Generation & Management The editors will welcome papers from all professors and researchers from universities, research centers,
organizations, companies and industries from all over the world in the hope that this will advance the scientific standards of the journal and provide a channel of communication between Iranian Scholars and their colleague in other parts of the world.