{"title":"用于动态遮阳条件下光伏系统最大功率跟踪的新型自适应授粉算法","authors":"Balmukund Kumar, Amitesh Kumar","doi":"10.1007/s40998-024-00696-z","DOIUrl":null,"url":null,"abstract":"<p>Maximum power point (MPP) technique in photovoltaic (PV) systems implements a tracking controller, which is utilized to optimize the energy production under variable atmospheric conditions. The tracking process becomes more difficult due to appearance of many peaks owing to partial shading conditions. Although conventional and soft computing technologies are frequently used to solve MPP tracking issues, their performance is constrained by the fixed step size of conventional methods. However, once soft computing methods reach a certain MPP, they are constrained by a lack of randomness. The novel adaptive flower pollination algorithm (AFPA) optimization technique proposed in this work, proceeds with global and local searching in a single step, which is very crucial for the success of the MPP tracking with this method. The robustness of the approach is examined by conducting zero, weak, moderate, and strong shading patterns to a complete performance assessment via simulation, and that performance is compared with traditional flower pollination algorithm (FPA) and particle swarm optimization (PSO) techniques. This newly proposed method has the following advantages over the conventional FPA: a) risk of failure is zero; b) oscillation of power, voltage, and current across the load is minimized; c) produced energy is increased by 0.5 to 2.5% with respect to FPA; d) MPP is tracked smoothly and e) reduced MPP tracking time by average 45%. This advantage is especially noticeable in the dynamic variation of the shading patterns.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Adaptive Flower Pollination Algorithm for Maximum Power Tracking of Photovoltaic Systems Under Dynamic Shading Conditions\",\"authors\":\"Balmukund Kumar, Amitesh Kumar\",\"doi\":\"10.1007/s40998-024-00696-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Maximum power point (MPP) technique in photovoltaic (PV) systems implements a tracking controller, which is utilized to optimize the energy production under variable atmospheric conditions. The tracking process becomes more difficult due to appearance of many peaks owing to partial shading conditions. Although conventional and soft computing technologies are frequently used to solve MPP tracking issues, their performance is constrained by the fixed step size of conventional methods. However, once soft computing methods reach a certain MPP, they are constrained by a lack of randomness. The novel adaptive flower pollination algorithm (AFPA) optimization technique proposed in this work, proceeds with global and local searching in a single step, which is very crucial for the success of the MPP tracking with this method. The robustness of the approach is examined by conducting zero, weak, moderate, and strong shading patterns to a complete performance assessment via simulation, and that performance is compared with traditional flower pollination algorithm (FPA) and particle swarm optimization (PSO) techniques. This newly proposed method has the following advantages over the conventional FPA: a) risk of failure is zero; b) oscillation of power, voltage, and current across the load is minimized; c) produced energy is increased by 0.5 to 2.5% with respect to FPA; d) MPP is tracked smoothly and e) reduced MPP tracking time by average 45%. This advantage is especially noticeable in the dynamic variation of the shading patterns.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00696-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00696-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A Novel Adaptive Flower Pollination Algorithm for Maximum Power Tracking of Photovoltaic Systems Under Dynamic Shading Conditions
Maximum power point (MPP) technique in photovoltaic (PV) systems implements a tracking controller, which is utilized to optimize the energy production under variable atmospheric conditions. The tracking process becomes more difficult due to appearance of many peaks owing to partial shading conditions. Although conventional and soft computing technologies are frequently used to solve MPP tracking issues, their performance is constrained by the fixed step size of conventional methods. However, once soft computing methods reach a certain MPP, they are constrained by a lack of randomness. The novel adaptive flower pollination algorithm (AFPA) optimization technique proposed in this work, proceeds with global and local searching in a single step, which is very crucial for the success of the MPP tracking with this method. The robustness of the approach is examined by conducting zero, weak, moderate, and strong shading patterns to a complete performance assessment via simulation, and that performance is compared with traditional flower pollination algorithm (FPA) and particle swarm optimization (PSO) techniques. This newly proposed method has the following advantages over the conventional FPA: a) risk of failure is zero; b) oscillation of power, voltage, and current across the load is minimized; c) produced energy is increased by 0.5 to 2.5% with respect to FPA; d) MPP is tracked smoothly and e) reduced MPP tracking time by average 45%. This advantage is especially noticeable in the dynamic variation of the shading patterns.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.