M. Ganesh Karthik, U. Sivaji, M. Manohar, D. Jayaram, M. Venu Gopalachari, Ramesh Vatambeti
{"title":"基于深度学习模型中 S-ROA 混合的城域网入侵检测模型","authors":"M. Ganesh Karthik, U. Sivaji, M. Manohar, D. Jayaram, M. Venu Gopalachari, Ramesh Vatambeti","doi":"10.1007/s40998-024-00700-6","DOIUrl":null,"url":null,"abstract":"<p>A kind of wireless network called a “mobile ad hoc network” (MANET) can transfer data without the aid of any infrastructure. Due to its short battery life, limited bandwidth, reliance on intermediaries or other nodes, distributed architecture, and self-organisation, the MANET node is vulnerable to many security-related attacks. The Internet of Things (IoT), a more modern networking pattern that can be seen as a superset of the paradigms discussed above, has recently come into existence. It is extremely difficult to secure these networks due to their scattered design and the few resources they have. A key function of intrusion detection systems (IDS) is the identification of hostile actions that impair network performance. It is extremely important that an IDS be able to adapt to such difficulties. As a result, the research creates a deep learning-based feature extraction to increase the machine learning technique's classification accuracy. The suggested model uses outstanding network-constructed feature extraction (RNBFE), which pulls structures from a deep residual network's many convolutional layers. Additionally, RNBFE's numerous parameters cause a lot of configuration issues because they require manual parameter adjustment. Therefore, the integration of the Rider Optimization Algorithm (ROA) and the Spotted Hyena Optimizer (SHO) to frame the new algorithm, Spotted Hyena-based Rider Optimization (S-ROA), is used to adjust the RNBFE’s settings. Attack classification is performed on the resulting feature vectors using fuzzy neural classifiers (FNC). The experimental analysis uses two datasets that are publicly accessible.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intrusion Detection Model Based on Hybridization of S-ROA in Deep Learning Model for MANET\",\"authors\":\"M. Ganesh Karthik, U. Sivaji, M. Manohar, D. Jayaram, M. Venu Gopalachari, Ramesh Vatambeti\",\"doi\":\"10.1007/s40998-024-00700-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A kind of wireless network called a “mobile ad hoc network” (MANET) can transfer data without the aid of any infrastructure. Due to its short battery life, limited bandwidth, reliance on intermediaries or other nodes, distributed architecture, and self-organisation, the MANET node is vulnerable to many security-related attacks. The Internet of Things (IoT), a more modern networking pattern that can be seen as a superset of the paradigms discussed above, has recently come into existence. It is extremely difficult to secure these networks due to their scattered design and the few resources they have. A key function of intrusion detection systems (IDS) is the identification of hostile actions that impair network performance. It is extremely important that an IDS be able to adapt to such difficulties. As a result, the research creates a deep learning-based feature extraction to increase the machine learning technique's classification accuracy. The suggested model uses outstanding network-constructed feature extraction (RNBFE), which pulls structures from a deep residual network's many convolutional layers. Additionally, RNBFE's numerous parameters cause a lot of configuration issues because they require manual parameter adjustment. Therefore, the integration of the Rider Optimization Algorithm (ROA) and the Spotted Hyena Optimizer (SHO) to frame the new algorithm, Spotted Hyena-based Rider Optimization (S-ROA), is used to adjust the RNBFE’s settings. Attack classification is performed on the resulting feature vectors using fuzzy neural classifiers (FNC). The experimental analysis uses two datasets that are publicly accessible.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40998-024-00700-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40998-024-00700-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
An Intrusion Detection Model Based on Hybridization of S-ROA in Deep Learning Model for MANET
A kind of wireless network called a “mobile ad hoc network” (MANET) can transfer data without the aid of any infrastructure. Due to its short battery life, limited bandwidth, reliance on intermediaries or other nodes, distributed architecture, and self-organisation, the MANET node is vulnerable to many security-related attacks. The Internet of Things (IoT), a more modern networking pattern that can be seen as a superset of the paradigms discussed above, has recently come into existence. It is extremely difficult to secure these networks due to their scattered design and the few resources they have. A key function of intrusion detection systems (IDS) is the identification of hostile actions that impair network performance. It is extremely important that an IDS be able to adapt to such difficulties. As a result, the research creates a deep learning-based feature extraction to increase the machine learning technique's classification accuracy. The suggested model uses outstanding network-constructed feature extraction (RNBFE), which pulls structures from a deep residual network's many convolutional layers. Additionally, RNBFE's numerous parameters cause a lot of configuration issues because they require manual parameter adjustment. Therefore, the integration of the Rider Optimization Algorithm (ROA) and the Spotted Hyena Optimizer (SHO) to frame the new algorithm, Spotted Hyena-based Rider Optimization (S-ROA), is used to adjust the RNBFE’s settings. Attack classification is performed on the resulting feature vectors using fuzzy neural classifiers (FNC). The experimental analysis uses two datasets that are publicly accessible.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.