A. N. Bugaets, S. Yu. Lupakov, L. V. Gonchukov, O. V. Sokolov, N. Yu. Sidorenko
{"title":"利用观测数据和ERA5再分析数据建立上乌苏里江流域径流模型的效率","authors":"A. N. Bugaets, S. Yu. Lupakov, L. V. Gonchukov, O. V. Sokolov, N. Yu. Sidorenko","doi":"10.3103/s1068373923120051","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Experience of using meteorological observations and the ERA5 reanalysis for runoff modeling using the GR4J conceptual model is outlined. The study objects are catchments within the Ussuri River basin (Kirovskii, the Russian Far East). The results of the comparison of ground-based observations and reanalysis data are presented. The hydrological model has been calibrated and verified on the basis of various data sources. The traditional scores NSE, logNSE, and BIAS have been used to evaluate the modeling efficiency. According to the scores, the modeling efficiency is generally \"satisfactory\" and better. It is shown that for simulations, it is better to use observation network data in case of floods and the reanalysis data in case of spring high water and low flow periods. It is concluded that the effective resolution of the ERA5 data for daily precipitation and air temperature for hydrological modeling in the study area is <span>\\(0.75^\\circ{-}1.0^\\circ\\)</span> (<span>\\(\\sim\\)</span>90–120 km).</p>","PeriodicalId":49581,"journal":{"name":"Russian Meteorology and Hydrology","volume":"11 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Runoff Modeling Efficiency for the Upper Ussuri Basin Using Observational Data and the ERA5 Reanalysis\",\"authors\":\"A. N. Bugaets, S. Yu. Lupakov, L. V. Gonchukov, O. V. Sokolov, N. Yu. Sidorenko\",\"doi\":\"10.3103/s1068373923120051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Experience of using meteorological observations and the ERA5 reanalysis for runoff modeling using the GR4J conceptual model is outlined. The study objects are catchments within the Ussuri River basin (Kirovskii, the Russian Far East). The results of the comparison of ground-based observations and reanalysis data are presented. The hydrological model has been calibrated and verified on the basis of various data sources. The traditional scores NSE, logNSE, and BIAS have been used to evaluate the modeling efficiency. According to the scores, the modeling efficiency is generally \\\"satisfactory\\\" and better. It is shown that for simulations, it is better to use observation network data in case of floods and the reanalysis data in case of spring high water and low flow periods. It is concluded that the effective resolution of the ERA5 data for daily precipitation and air temperature for hydrological modeling in the study area is <span>\\\\(0.75^\\\\circ{-}1.0^\\\\circ\\\\)</span> (<span>\\\\(\\\\sim\\\\)</span>90–120 km).</p>\",\"PeriodicalId\":49581,\"journal\":{\"name\":\"Russian Meteorology and Hydrology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Meteorology and Hydrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3103/s1068373923120051\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Meteorology and Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3103/s1068373923120051","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Runoff Modeling Efficiency for the Upper Ussuri Basin Using Observational Data and the ERA5 Reanalysis
Abstract
Experience of using meteorological observations and the ERA5 reanalysis for runoff modeling using the GR4J conceptual model is outlined. The study objects are catchments within the Ussuri River basin (Kirovskii, the Russian Far East). The results of the comparison of ground-based observations and reanalysis data are presented. The hydrological model has been calibrated and verified on the basis of various data sources. The traditional scores NSE, logNSE, and BIAS have been used to evaluate the modeling efficiency. According to the scores, the modeling efficiency is generally "satisfactory" and better. It is shown that for simulations, it is better to use observation network data in case of floods and the reanalysis data in case of spring high water and low flow periods. It is concluded that the effective resolution of the ERA5 data for daily precipitation and air temperature for hydrological modeling in the study area is \(0.75^\circ{-}1.0^\circ\) (\(\sim\)90–120 km).
期刊介绍:
Russian Meteorology and Hydrology is a peer reviewed journal that covers topical issues of hydrometeorological science and practice: methods of forecasting weather and hydrological phenomena, climate monitoring issues, environmental pollution, space hydrometeorology, agrometeorology.