{"title":"潜在氢晶格时钟中的陷阱诱导展宽","authors":"J P Scott, R M Potvliege, D Carty, M P A Jones","doi":"10.1088/1681-7575/ad1e37","DOIUrl":null,"url":null,"abstract":"We consider the potential use of optical traps for precision measurements in atomic hydrogen (H). Using an implicit summation method, we calculate the atomic polarisability, the rates of elastic/inelastic scattering and the ionisation rate in the wavelength range (395–1000) nm. We extend previous work to predict three new magic wavelengths for the 1S–2S transition. At the magic wavelengths, the 1S–2S transition is unavoidably and significantly broadened due to trap-induced ionisation associated with the high intensity required to trap the 1S state. However, we also find that this effect is partially mitigated by the low mass of H, which increases the trap frequency, enabling Lamb–Dicke confinement in shallow lattices. We find that a H optical lattice clock, free from the motional systematics which dominate in beam experiments, could operate with an intrinsic linewidth of the order of 1 kHz. Trap-induced losses are shown not to limit measurements of other transitions.","PeriodicalId":18444,"journal":{"name":"Metrologia","volume":"41 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trap induced broadening in a potential hydrogen lattice clock\",\"authors\":\"J P Scott, R M Potvliege, D Carty, M P A Jones\",\"doi\":\"10.1088/1681-7575/ad1e37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the potential use of optical traps for precision measurements in atomic hydrogen (H). Using an implicit summation method, we calculate the atomic polarisability, the rates of elastic/inelastic scattering and the ionisation rate in the wavelength range (395–1000) nm. We extend previous work to predict three new magic wavelengths for the 1S–2S transition. At the magic wavelengths, the 1S–2S transition is unavoidably and significantly broadened due to trap-induced ionisation associated with the high intensity required to trap the 1S state. However, we also find that this effect is partially mitigated by the low mass of H, which increases the trap frequency, enabling Lamb–Dicke confinement in shallow lattices. We find that a H optical lattice clock, free from the motional systematics which dominate in beam experiments, could operate with an intrinsic linewidth of the order of 1 kHz. Trap-induced losses are shown not to limit measurements of other transitions.\",\"PeriodicalId\":18444,\"journal\":{\"name\":\"Metrologia\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metrologia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1681-7575/ad1e37\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metrologia","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1681-7575/ad1e37","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Trap induced broadening in a potential hydrogen lattice clock
We consider the potential use of optical traps for precision measurements in atomic hydrogen (H). Using an implicit summation method, we calculate the atomic polarisability, the rates of elastic/inelastic scattering and the ionisation rate in the wavelength range (395–1000) nm. We extend previous work to predict three new magic wavelengths for the 1S–2S transition. At the magic wavelengths, the 1S–2S transition is unavoidably and significantly broadened due to trap-induced ionisation associated with the high intensity required to trap the 1S state. However, we also find that this effect is partially mitigated by the low mass of H, which increases the trap frequency, enabling Lamb–Dicke confinement in shallow lattices. We find that a H optical lattice clock, free from the motional systematics which dominate in beam experiments, could operate with an intrinsic linewidth of the order of 1 kHz. Trap-induced losses are shown not to limit measurements of other transitions.
期刊介绍:
Published 6 times per year, Metrologia covers the fundamentals of measurements, particularly those dealing with the seven base units of the International System of Units (metre, kilogram, second, ampere, kelvin, candela, mole) or proposals to replace them.
The journal also publishes papers that contribute to the solution of difficult measurement problems and improve the accuracy of derived units and constants that are of fundamental importance to physics.
In addition to regular papers, the journal publishes review articles, issues devoted to single topics of timely interest and occasional conference proceedings. Letters to the Editor and Short Communications (generally three pages or less) are also considered.