动态系统封闭的量子力学

David C. Freeman, Dimitrios Giannakis, Joanna Slawinska
{"title":"动态系统封闭的量子力学","authors":"David C. Freeman, Dimitrios Giannakis, Joanna Slawinska","doi":"10.1137/22m1514246","DOIUrl":null,"url":null,"abstract":"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 283-333, March 2024. <br/> Abstract. We propose a scheme for data-driven parameterization of unresolved dimensions of dynamical systems based on the mathematical framework of quantum mechanics and Koopman operator theory. Given a system in which some components of the state are unknown, this method involves defining a surrogate system in a time-dependent quantum state which determines the fluxes from the unresolved degrees of freedom at each timestep. The quantum state is a density operator on a finite-dimensional Hilbert space of classical observables and evolves over time under an action induced by the Koopman operator. The quantum state also updates with new values of the resolved variables according to a quantum Bayes’ law, implemented via an operator-valued feature map. Kernel methods are utilized to learn data-driven basis functions and represent quantum states, observables, and evolution operators as matrices. The resulting computational schemes are automatically positivity-preserving, aiding in the physical consistency of the parameterized system. We analyze the results of two different modalities of this methodology applied to the Lorenz 63 and Lorenz 96 multiscale systems and show how this approach preserves important statistical and qualitative properties of the underlying chaotic dynamics.","PeriodicalId":501053,"journal":{"name":"Multiscale Modeling and Simulation","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Mechanics for Closure of Dynamical Systems\",\"authors\":\"David C. Freeman, Dimitrios Giannakis, Joanna Slawinska\",\"doi\":\"10.1137/22m1514246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multiscale Modeling &amp;Simulation, Volume 22, Issue 1, Page 283-333, March 2024. <br/> Abstract. We propose a scheme for data-driven parameterization of unresolved dimensions of dynamical systems based on the mathematical framework of quantum mechanics and Koopman operator theory. Given a system in which some components of the state are unknown, this method involves defining a surrogate system in a time-dependent quantum state which determines the fluxes from the unresolved degrees of freedom at each timestep. The quantum state is a density operator on a finite-dimensional Hilbert space of classical observables and evolves over time under an action induced by the Koopman operator. The quantum state also updates with new values of the resolved variables according to a quantum Bayes’ law, implemented via an operator-valued feature map. Kernel methods are utilized to learn data-driven basis functions and represent quantum states, observables, and evolution operators as matrices. The resulting computational schemes are automatically positivity-preserving, aiding in the physical consistency of the parameterized system. We analyze the results of two different modalities of this methodology applied to the Lorenz 63 and Lorenz 96 multiscale systems and show how this approach preserves important statistical and qualitative properties of the underlying chaotic dynamics.\",\"PeriodicalId\":501053,\"journal\":{\"name\":\"Multiscale Modeling and Simulation\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1514246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1514246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多尺度建模与仿真》,第 22 卷第 1 期,第 283-333 页,2024 年 3 月。 摘要我们基于量子力学和库普曼算子理论的数学框架,提出了一种对动态系统未解决维度进行数据驱动参数化的方案。给定一个系统,其中状态的某些成分是未知的,这种方法涉及在一个随时间变化的量子态中定义一个代理系统,该代理系统在每个时间步确定来自未解决自由度的通量。量子态是有限维希尔伯特经典观测变量空间上的密度算子,在库普曼算子的作用下随时间演化。根据量子贝叶斯定律,量子态也会随解析变量的新值更新,该定律通过算子值特征图实现。利用核方法学习数据驱动的基函数,并将量子态、观测值和演化算子表示为矩阵。由此产生的计算方案自动保持正向性,有助于参数化系统的物理一致性。我们分析了这种方法应用于洛伦兹 63 和洛伦兹 96 多尺度系统的两种不同模式的结果,并展示了这种方法如何保留了底层混沌动力学的重要统计和定性特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Mechanics for Closure of Dynamical Systems
Multiscale Modeling &Simulation, Volume 22, Issue 1, Page 283-333, March 2024.
Abstract. We propose a scheme for data-driven parameterization of unresolved dimensions of dynamical systems based on the mathematical framework of quantum mechanics and Koopman operator theory. Given a system in which some components of the state are unknown, this method involves defining a surrogate system in a time-dependent quantum state which determines the fluxes from the unresolved degrees of freedom at each timestep. The quantum state is a density operator on a finite-dimensional Hilbert space of classical observables and evolves over time under an action induced by the Koopman operator. The quantum state also updates with new values of the resolved variables according to a quantum Bayes’ law, implemented via an operator-valued feature map. Kernel methods are utilized to learn data-driven basis functions and represent quantum states, observables, and evolution operators as matrices. The resulting computational schemes are automatically positivity-preserving, aiding in the physical consistency of the parameterized system. We analyze the results of two different modalities of this methodology applied to the Lorenz 63 and Lorenz 96 multiscale systems and show how this approach preserves important statistical and qualitative properties of the underlying chaotic dynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信