从温室中分离出的阿尔及利亚本地细菌对西红柿上的灰霉病菌和新溶菌Oidium的生物防治潜力

IF 2.1 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY
Abdelhamid Foughalia, Mourad Hamiroune, Charlotte Chandeysson, Jean-François Bourgeay, Magali Duffaud, Marc Bardin, Philippe C. Nicot, Kamel Aissat
{"title":"从温室中分离出的阿尔及利亚本地细菌对西红柿上的灰霉病菌和新溶菌Oidium的生物防治潜力","authors":"Abdelhamid Foughalia, Mourad Hamiroune, Charlotte Chandeysson, Jean-François Bourgeay, Magali Duffaud, Marc Bardin, Philippe C. Nicot, Kamel Aissat","doi":"10.1007/s41348-024-00865-6","DOIUrl":null,"url":null,"abstract":"<p><i>Botrytis cinerea</i> and <i>Oidium neolycopersici</i> represent two of the key fungal pathogens of tomato. In this study, 142 isolates were screened for their biocontrol potential against these pathogens. They were initially isolated from rhizospheric and from non-rhizospheric soil samples collected near healthy tomato plants grown in unheated greenhouses showing severe epidemics of grey mould in the Jijel region of Algeria. All the isolates were tested in vitro against <i>B. cinerea</i> using dual culture assays, and a subsample of 40 isolates (20 rhizospheric isolates and 20 non-rhizospheric isolates) was retained. The antagonistic effect of these candidates on spore germination of <i>B. cinerea</i> and their effect against <i>O. neolycopersici</i> and <i>B. cinerea</i> on tomato plants were then evaluated. The dual culture assays showed that non-rhizospheric bacteria were significantly more effective than rhizospheric bacteria in inhibiting the mycelial growth of <i>B. cinerea</i>. <i>In planta</i>, however, rhizospheric isolates showed significantly higher protective levels. This protective effect was significantly correlated to the ability of bacterial isolates to inhibit spore germination of <i>B. cinerea</i>. Taken together, these results allowed us to retain seven isolates with over 90% of efficacy against <i>B. cinerea</i>. These isolates were also able to protect tomato plants against <i>O. neolycopersici</i>, and they were identified as, <i>P. argentinensis</i> (SJ2), <i>Serratia marcescens</i> (SJ11), <i>Pseudomonas lactis</i> (SJ55), <i>Pseudomonas veronii</i> (RSAB3), <i>Stenotrophomonas maltophilia</i> (RTB17), <i>Bacillus subtilis</i> (SA14) and <i>Bacillus toyonensis</i> (SA87). This study showed promising results that could be exploited for a potential application of bacterial-based biocontrol agents efficient against both <i>B. cinerea</i> and <i>O. neolycopersici</i>.</p>","PeriodicalId":16838,"journal":{"name":"Journal of Plant Diseases and Protection","volume":"6 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biocontrol potential of native Algerian bacteria isolated from greenhouses against Botrytis cinerea and Oidium neolycopersici on tomato\",\"authors\":\"Abdelhamid Foughalia, Mourad Hamiroune, Charlotte Chandeysson, Jean-François Bourgeay, Magali Duffaud, Marc Bardin, Philippe C. Nicot, Kamel Aissat\",\"doi\":\"10.1007/s41348-024-00865-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Botrytis cinerea</i> and <i>Oidium neolycopersici</i> represent two of the key fungal pathogens of tomato. In this study, 142 isolates were screened for their biocontrol potential against these pathogens. They were initially isolated from rhizospheric and from non-rhizospheric soil samples collected near healthy tomato plants grown in unheated greenhouses showing severe epidemics of grey mould in the Jijel region of Algeria. All the isolates were tested in vitro against <i>B. cinerea</i> using dual culture assays, and a subsample of 40 isolates (20 rhizospheric isolates and 20 non-rhizospheric isolates) was retained. The antagonistic effect of these candidates on spore germination of <i>B. cinerea</i> and their effect against <i>O. neolycopersici</i> and <i>B. cinerea</i> on tomato plants were then evaluated. The dual culture assays showed that non-rhizospheric bacteria were significantly more effective than rhizospheric bacteria in inhibiting the mycelial growth of <i>B. cinerea</i>. <i>In planta</i>, however, rhizospheric isolates showed significantly higher protective levels. This protective effect was significantly correlated to the ability of bacterial isolates to inhibit spore germination of <i>B. cinerea</i>. Taken together, these results allowed us to retain seven isolates with over 90% of efficacy against <i>B. cinerea</i>. These isolates were also able to protect tomato plants against <i>O. neolycopersici</i>, and they were identified as, <i>P. argentinensis</i> (SJ2), <i>Serratia marcescens</i> (SJ11), <i>Pseudomonas lactis</i> (SJ55), <i>Pseudomonas veronii</i> (RSAB3), <i>Stenotrophomonas maltophilia</i> (RTB17), <i>Bacillus subtilis</i> (SA14) and <i>Bacillus toyonensis</i> (SA87). This study showed promising results that could be exploited for a potential application of bacterial-based biocontrol agents efficient against both <i>B. cinerea</i> and <i>O. neolycopersici</i>.</p>\",\"PeriodicalId\":16838,\"journal\":{\"name\":\"Journal of Plant Diseases and Protection\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Diseases and Protection\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s41348-024-00865-6\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Diseases and Protection","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s41348-024-00865-6","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

番茄灰霉病菌(Botrytis cinerea)和新褐斑病菌(Oidium neolycopersici)是番茄的两种主要真菌病原体。在这项研究中,对 142 个分离物进行了筛选,以确定它们对这些病原体的生物防治潜力。这些分离物最初是从阿尔及利亚吉杰勒(Jijel)地区在灰霉病严重流行的无暖气温室中生长的健康番茄植株附近采集的根茎层和非根茎层土壤样本中分离出来的。采用双重培养法对所有分离物进行了抗灰霉病菌的体外测试,并保留了 40 个分离物的子样本(20 个根瘤菌分离物和 20 个非根瘤菌分离物)。然后评估了这些候选分离物对 B. cinerea 孢子萌发的拮抗作用,以及它们对番茄植株上的 O. neolycopersici 和 B. cinerea 的作用。双重培养试验表明,非根瘤菌抑制 B. cinerea 菌丝生长的效果明显优于根瘤菌。然而,在植物体内,根瘤菌分离物的保护水平明显更高。这种保护作用与细菌分离物抑制银环孢菌孢子萌发的能力明显相关。综合这些结果,我们保留了 7 个对赤霉病菌的效力超过 90% 的分离物。这些分离菌株也能保护番茄植株免受新溶血性球孢菌的侵害,它们分别是:阿根廷假丝酵母菌(SJ2)、大豆沙雷氏菌(SJ11)、乳酸假单胞菌(SJ55)、维罗尼假单胞菌(RSAB3)、嗜麦芽血单胞菌(RTB17)、枯草芽孢杆菌(SA14)和丰产芽孢杆菌(SA87)。这项研究显示,基于细菌的生物防治剂可有效防治 B. cinerea 和 O. neolycopersici。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biocontrol potential of native Algerian bacteria isolated from greenhouses against Botrytis cinerea and Oidium neolycopersici on tomato

Biocontrol potential of native Algerian bacteria isolated from greenhouses against Botrytis cinerea and Oidium neolycopersici on tomato

Botrytis cinerea and Oidium neolycopersici represent two of the key fungal pathogens of tomato. In this study, 142 isolates were screened for their biocontrol potential against these pathogens. They were initially isolated from rhizospheric and from non-rhizospheric soil samples collected near healthy tomato plants grown in unheated greenhouses showing severe epidemics of grey mould in the Jijel region of Algeria. All the isolates were tested in vitro against B. cinerea using dual culture assays, and a subsample of 40 isolates (20 rhizospheric isolates and 20 non-rhizospheric isolates) was retained. The antagonistic effect of these candidates on spore germination of B. cinerea and their effect against O. neolycopersici and B. cinerea on tomato plants were then evaluated. The dual culture assays showed that non-rhizospheric bacteria were significantly more effective than rhizospheric bacteria in inhibiting the mycelial growth of B. cinerea. In planta, however, rhizospheric isolates showed significantly higher protective levels. This protective effect was significantly correlated to the ability of bacterial isolates to inhibit spore germination of B. cinerea. Taken together, these results allowed us to retain seven isolates with over 90% of efficacy against B. cinerea. These isolates were also able to protect tomato plants against O. neolycopersici, and they were identified as, P. argentinensis (SJ2), Serratia marcescens (SJ11), Pseudomonas lactis (SJ55), Pseudomonas veronii (RSAB3), Stenotrophomonas maltophilia (RTB17), Bacillus subtilis (SA14) and Bacillus toyonensis (SA87). This study showed promising results that could be exploited for a potential application of bacterial-based biocontrol agents efficient against both B. cinerea and O. neolycopersici.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Diseases and Protection
Journal of Plant Diseases and Protection 农林科学-农业综合
CiteScore
4.30
自引率
5.00%
发文量
124
审稿时长
3 months
期刊介绍: The Journal of Plant Diseases and Protection (JPDP) is an international scientific journal that publishes original research articles, reviews, short communications, position and opinion papers dealing with applied scientific aspects of plant pathology, plant health, plant protection and findings on newly occurring diseases and pests. "Special Issues" on coherent themes often arising from International Conferences are offered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信