Catherine E Ginnane, Jocelyn C Turnbull, Sebastian Naeher, Brad E Rosenheim, Ryan A Venturelli, Andy M Phillips, Simon Reeve, Jeremy Parry-Thompson, Albert Zondervan, Richard H Levy, Kyu-Cheul Yoo, Gavin Dunbar, Theo Calkin, Carlota Escutia, Julia Gutierrez Pastor
{"title":"通过热解氧化和热解-气相色谱-质谱联用技术推进南极沉积物年代学研究","authors":"Catherine E Ginnane, Jocelyn C Turnbull, Sebastian Naeher, Brad E Rosenheim, Ryan A Venturelli, Andy M Phillips, Simon Reeve, Jeremy Parry-Thompson, Albert Zondervan, Richard H Levy, Kyu-Cheul Yoo, Gavin Dunbar, Theo Calkin, Carlota Escutia, Julia Gutierrez Pastor","doi":"10.1017/rdc.2023.116","DOIUrl":null,"url":null,"abstract":"Radiocarbon (<jats:sup>14</jats:sup>C) dating of sediment deposition around Antarctica is often challenging due to heterogeneity in sources and ages of organic carbon in the sediment. Chemical and thermochemical techniques have been used to separate organic carbon when microfossils are not present. These techniques generally improve on bulk sediment dates, but they necessitate assumptions about the age spectra of specific molecules or compound classes and about the chemical heterogeneity of thermochemical separations. To address this, the Rafter Radiocarbon Laboratory has established parallel ramped pyrolysis oxidation (RPO) and ramped pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) systems to thermochemically separate distinct carbon fractions, diagnose the chemical composition of each fraction, and target suitable RPO fractions for radiocarbon dating. Three case studies of sediment taken from locations around Antarctica are presented to demonstrate the implementation of combined RPO-AMS and Py-GC-MS to provide more robust age determination in detrital sediment stratigraphy. These three depositional environments are good examples of analytical and interpretive challenges related to oceanographic conditions, carbon sources, and other factors. Using parallel RPO-AMS and Py-GC-MS analyses, we reduce the number of radiocarbon measurements required, minimize run times, provide context for unexpected <jats:sup>14</jats:sup>C ages, and better support interpretations of radiocarbon measurements in the context of environmental reconstruction.","PeriodicalId":21020,"journal":{"name":"Radiocarbon","volume":"42 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADVANCING ANTARCTIC SEDIMENT CHRONOLOGY THROUGH COMBINED RAMPED PYROLYSIS OXIDATION AND PYROLYSIS-GC-MS\",\"authors\":\"Catherine E Ginnane, Jocelyn C Turnbull, Sebastian Naeher, Brad E Rosenheim, Ryan A Venturelli, Andy M Phillips, Simon Reeve, Jeremy Parry-Thompson, Albert Zondervan, Richard H Levy, Kyu-Cheul Yoo, Gavin Dunbar, Theo Calkin, Carlota Escutia, Julia Gutierrez Pastor\",\"doi\":\"10.1017/rdc.2023.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiocarbon (<jats:sup>14</jats:sup>C) dating of sediment deposition around Antarctica is often challenging due to heterogeneity in sources and ages of organic carbon in the sediment. Chemical and thermochemical techniques have been used to separate organic carbon when microfossils are not present. These techniques generally improve on bulk sediment dates, but they necessitate assumptions about the age spectra of specific molecules or compound classes and about the chemical heterogeneity of thermochemical separations. To address this, the Rafter Radiocarbon Laboratory has established parallel ramped pyrolysis oxidation (RPO) and ramped pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) systems to thermochemically separate distinct carbon fractions, diagnose the chemical composition of each fraction, and target suitable RPO fractions for radiocarbon dating. Three case studies of sediment taken from locations around Antarctica are presented to demonstrate the implementation of combined RPO-AMS and Py-GC-MS to provide more robust age determination in detrital sediment stratigraphy. These three depositional environments are good examples of analytical and interpretive challenges related to oceanographic conditions, carbon sources, and other factors. Using parallel RPO-AMS and Py-GC-MS analyses, we reduce the number of radiocarbon measurements required, minimize run times, provide context for unexpected <jats:sup>14</jats:sup>C ages, and better support interpretations of radiocarbon measurements in the context of environmental reconstruction.\",\"PeriodicalId\":21020,\"journal\":{\"name\":\"Radiocarbon\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiocarbon\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/rdc.2023.116\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiocarbon","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/rdc.2023.116","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
ADVANCING ANTARCTIC SEDIMENT CHRONOLOGY THROUGH COMBINED RAMPED PYROLYSIS OXIDATION AND PYROLYSIS-GC-MS
Radiocarbon (14C) dating of sediment deposition around Antarctica is often challenging due to heterogeneity in sources and ages of organic carbon in the sediment. Chemical and thermochemical techniques have been used to separate organic carbon when microfossils are not present. These techniques generally improve on bulk sediment dates, but they necessitate assumptions about the age spectra of specific molecules or compound classes and about the chemical heterogeneity of thermochemical separations. To address this, the Rafter Radiocarbon Laboratory has established parallel ramped pyrolysis oxidation (RPO) and ramped pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) systems to thermochemically separate distinct carbon fractions, diagnose the chemical composition of each fraction, and target suitable RPO fractions for radiocarbon dating. Three case studies of sediment taken from locations around Antarctica are presented to demonstrate the implementation of combined RPO-AMS and Py-GC-MS to provide more robust age determination in detrital sediment stratigraphy. These three depositional environments are good examples of analytical and interpretive challenges related to oceanographic conditions, carbon sources, and other factors. Using parallel RPO-AMS and Py-GC-MS analyses, we reduce the number of radiocarbon measurements required, minimize run times, provide context for unexpected 14C ages, and better support interpretations of radiocarbon measurements in the context of environmental reconstruction.
期刊介绍:
Radiocarbon serves as the leading international journal for technical and interpretive articles, date lists, and advancements in 14C and other radioisotopes relevant to archaeological, geophysical, oceanographic, and related dating methods. Established in 1959, it has published numerous seminal works and hosts the triennial International Radiocarbon Conference proceedings. The journal also features occasional special issues. Submissions encompass regular articles such as research reports, technical descriptions, and date lists, along with comments, letters to the editor, book reviews, and laboratory lists.