{"title":"基于局部梯度损伤方法的高循环疲劳裂纹生长模拟数值框架","authors":"","doi":"10.1007/s00466-023-02439-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"17 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical framework based on localizing gradient damage methodology for high cycle fatigue crack growth simulations\",\"authors\":\"\",\"doi\":\"10.1007/s00466-023-02439-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-023-02439-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-023-02439-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
摘要 用于疲劳分析的标准非局部梯度损伤方法有一个固有的缺点,即损伤区异常扩大。这会导致模拟中裂纹的快速增长,而这往往与实验证据相悖。为了解决这种不良行为,我们制定了用于高循环疲劳裂纹增长模拟的局部梯度损伤方法。该框架包括通过连续介质力学将损伤和弹性耦合、疲劳损伤规律和交互函数(可降低损伤区域对周围局部的影响)。本方案可防止严重受损区域周围的损伤带出现虚假扩大,因此可成功应对模拟中疲劳裂纹的非物理增长。在模式 I 和混合模式高循环疲劳载荷下,在各种标准试样上对所开发的框架进行了测试。为此采用了非线性有限元分析。从数学角度推导出了局部化框架求解方程的离散形式。数值实例表明,使用所提出的局部化框架模拟的裂纹生长曲线与实验数据非常吻合,而且比标准的非局部化框架具有更高的精度。
A numerical framework based on localizing gradient damage methodology for high cycle fatigue crack growth simulations
Abstract
Standard non-local gradient damage methodology for fatigue analysis has an intrinsic drawback of unusual widening of the damage zone. This causes a rapid growth of crack in the simulations which often violate experimental evidences. In order to tackle this undesirable behaviour, the localizing gradient damage methodology has been formulated for high cycle fatigue crack growth simulations. The framework comprises of coupling damage and elasticity through continuum mechanics, a fatigue damage law and an interaction function which reduces the influence of damaged regions on the surrounding locality. The present scheme prevents the spurious widening of the damage-band around the critically damaged area and therefore the non-physical growth of fatigue crack in the simulations is successfully countered. The developed framework is tested on various standard specimens under mode-I and mixed-mode high cycle fatigue loads. Nonlinear finite element analysis is used for this purpose. The discretized form of solver equations for the localizing framework is mathematically derived. Numerical examples show that the simulated crack-growth curves using proposed localizing framework agree closely with the experimental data and has a higher accuracy than the standard non-local framework.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.