$$(3,\gamma )$-hyperelliptic 曲线的权重边界

Pub Date : 2024-02-05 DOI:10.1007/s10801-023-01295-7
{"title":"$$(3,\\gamma )$-hyperelliptic 曲线的权重边界","authors":"","doi":"10.1007/s10801-023-01295-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p><span> <span>\\((N,\\gamma )\\)</span> </span>-<em>hyperelliptic</em> semigroups were introduced by Fernando Torres to encapsulate the most salient properties of Weierstrass semigroups associated with totally ramified points of <em>N</em>-fold covers of curves of genus <span> <span>\\(\\gamma \\)</span> </span>. Torres characterized <span> <span>\\((2,\\gamma )\\)</span> </span>-hyperelliptic semigroups of maximal weight whenever their genus is large relative to <span> <span>\\(\\gamma \\)</span> </span>. Here we do the same for <span> <span>\\((3,\\gamma )\\)</span> </span>-hyperelliptic semigroups, and we formulate a conjecture about the general case whenever <span> <span>\\(N \\ge 3\\)</span> </span> is prime.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weight bounds for $$(3,\\\\gamma )$$ -hyperelliptic curves\",\"authors\":\"\",\"doi\":\"10.1007/s10801-023-01295-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p><span> <span>\\\\((N,\\\\gamma )\\\\)</span> </span>-<em>hyperelliptic</em> semigroups were introduced by Fernando Torres to encapsulate the most salient properties of Weierstrass semigroups associated with totally ramified points of <em>N</em>-fold covers of curves of genus <span> <span>\\\\(\\\\gamma \\\\)</span> </span>. Torres characterized <span> <span>\\\\((2,\\\\gamma )\\\\)</span> </span>-hyperelliptic semigroups of maximal weight whenever their genus is large relative to <span> <span>\\\\(\\\\gamma \\\\)</span> </span>. Here we do the same for <span> <span>\\\\((3,\\\\gamma )\\\\)</span> </span>-hyperelliptic semigroups, and we formulate a conjecture about the general case whenever <span> <span>\\\\(N \\\\ge 3\\\\)</span> </span> is prime.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01295-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01295-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 \((N,\gamma )\)-((N,\gamma))半群是由 Fernando Torres 提出的,它概括了与(((N,\gamma))属曲线的 N 个折叠盖的完全横切点相关的 Weierstrass 半群的最显著性质。托雷斯描述了 \((2,\gamma )\)-只要其属相对于 \(\gamma ) 是大的,就具有最大权重的双曲半群。在这里,我们对((3,\gamma )在这里,我们对 \((3,\gamma )\) -hyperelliptic semigroups 也做了同样的处理,并且我们对 \(N \ge 3\) 是素数的一般情况提出了一个猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weight bounds for $$(3,\gamma )$$ -hyperelliptic curves

Abstract

\((N,\gamma )\) -hyperelliptic semigroups were introduced by Fernando Torres to encapsulate the most salient properties of Weierstrass semigroups associated with totally ramified points of N-fold covers of curves of genus \(\gamma \) . Torres characterized \((2,\gamma )\) -hyperelliptic semigroups of maximal weight whenever their genus is large relative to \(\gamma \) . Here we do the same for \((3,\gamma )\) -hyperelliptic semigroups, and we formulate a conjecture about the general case whenever \(N \ge 3\) is prime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信