{"title":"有限分布网格的链代数","authors":"Oleksandra Gasanova, Lisa Nicklasson","doi":"10.1007/s10801-023-01294-8","DOIUrl":null,"url":null,"abstract":"<p>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its <i>h</i>-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension <span>\\(n>2\\)</span>, we show that the defining ideal has minimal generators of degree at least <i>n</i>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chain algebras of finite distributive lattices\",\"authors\":\"Oleksandra Gasanova, Lisa Nicklasson\",\"doi\":\"10.1007/s10801-023-01294-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its <i>h</i>-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension <span>\\\\(n>2\\\\)</span>, we show that the defining ideal has minimal generators of degree at least <i>n</i>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01294-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01294-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍了由有限分布网格的最大链定义的环状代数族。应用关于稳定集合多面体的结果,我们得出结论:每一个这样的代数都是正态的和科恩-麦考莱的,并根据底层网格的组合学给出了其克鲁尔维度的解释。当网格为平面时,我们证明相应的链代数由可排序的单项式集生成,并且与另一个有限分布网格的希比环同构。因此,它有一个具有二次格罗伯纳基的定义环理想,其 h 向量在某些标准杨表中计数上升。如果网格的维数是(n>2\),我们将证明定义理想至少有 n 级的最小生成器。
We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension \(n>2\), we show that the defining ideal has minimal generators of degree at least n.