巴里勒-马奇亚决议

Pub Date : 2024-02-05 DOI:10.1007/s10801-023-01293-9
Trung Chau, Selvi Kara
{"title":"巴里勒-马奇亚决议","authors":"Trung Chau, Selvi Kara","doi":"10.1007/s10801-023-01293-9","DOIUrl":null,"url":null,"abstract":"<p>We construct cellular resolutions for monomial ideals via discrete Morse theory. In particular, we develop an algorithm to create homogeneous acyclic matchings and we call the cellular resolutions induced from these matchings Barile–Macchia resolutions. These resolutions are minimal for edge ideals of weighted oriented forests and (most) cycles. As a result, we provide recursive formulas for graded Betti numbers and projective dimension. Furthermore, we compare Barile–Macchia resolutions to those created by Batzies and Welker and some well-known simplicial resolutions. Under certain assumptions, whenever the above resolutions are minimal, so are Barile–Macchia resolutions.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Barile–Macchia resolutions\",\"authors\":\"Trung Chau, Selvi Kara\",\"doi\":\"10.1007/s10801-023-01293-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct cellular resolutions for monomial ideals via discrete Morse theory. In particular, we develop an algorithm to create homogeneous acyclic matchings and we call the cellular resolutions induced from these matchings Barile–Macchia resolutions. These resolutions are minimal for edge ideals of weighted oriented forests and (most) cycles. As a result, we provide recursive formulas for graded Betti numbers and projective dimension. Furthermore, we compare Barile–Macchia resolutions to those created by Batzies and Welker and some well-known simplicial resolutions. Under certain assumptions, whenever the above resolutions are minimal, so are Barile–Macchia resolutions.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10801-023-01293-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-023-01293-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过离散莫尔斯理论构建单项式理想的蜂窝解析。特别是,我们开发了一种创建同质非循环匹配的算法,并将这些匹配诱导出的单元解析称为巴里勒-麦奇亚解析。对于加权定向森林的边理想和(大多数)循环,这些决议都是最小的。因此,我们提供了分级贝蒂数和投影维数的递推公式。此外,我们还将巴里勒-麦基雅解析与巴齐斯和韦尔克创建的解析以及一些著名的简单解析进行了比较。在某些假设条件下,只要上述决议是最小的,巴里勒-马奇亚决议也是最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Barile–Macchia resolutions

分享
查看原文
Barile–Macchia resolutions

We construct cellular resolutions for monomial ideals via discrete Morse theory. In particular, we develop an algorithm to create homogeneous acyclic matchings and we call the cellular resolutions induced from these matchings Barile–Macchia resolutions. These resolutions are minimal for edge ideals of weighted oriented forests and (most) cycles. As a result, we provide recursive formulas for graded Betti numbers and projective dimension. Furthermore, we compare Barile–Macchia resolutions to those created by Batzies and Welker and some well-known simplicial resolutions. Under certain assumptions, whenever the above resolutions are minimal, so are Barile–Macchia resolutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信