部分观测随机伏特拉方程的贝叶斯参数推断

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Ajay Jasra, Hamza Ruzayqat, Amin Wu
{"title":"部分观测随机伏特拉方程的贝叶斯参数推断","authors":"Ajay Jasra, Hamza Ruzayqat, Amin Wu","doi":"10.1007/s11222-024-10389-6","DOIUrl":null,"url":null,"abstract":"<p>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of <span>\\(\\mathcal {O}(\\epsilon ^2)\\)</span>, <span>\\(\\epsilon &gt;0\\)</span>, is <span>\\(\\mathcal {O}(\\epsilon ^{-\\tfrac{4}{2H+1}})\\)</span>, where <i>H</i> is the Hurst parameter. If one uses a single level MCMC method then the cost is <span>\\(\\mathcal {O}(\\epsilon ^{-\\tfrac{2(2H+3)}{2H+1}})\\)</span> to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":"19 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian parameter inference for partially observed stochastic volterra equations\",\"authors\":\"Ajay Jasra, Hamza Ruzayqat, Amin Wu\",\"doi\":\"10.1007/s11222-024-10389-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of <span>\\\\(\\\\mathcal {O}(\\\\epsilon ^2)\\\\)</span>, <span>\\\\(\\\\epsilon &gt;0\\\\)</span>, is <span>\\\\(\\\\mathcal {O}(\\\\epsilon ^{-\\\\tfrac{4}{2H+1}})\\\\)</span>, where <i>H</i> is the Hurst parameter. If one uses a single level MCMC method then the cost is <span>\\\\(\\\\mathcal {O}(\\\\epsilon ^{-\\\\tfrac{2(2H+3)}{2H+1}})\\\\)</span> to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.</p>\",\"PeriodicalId\":22058,\"journal\":{\"name\":\"Statistics and Computing\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11222-024-10389-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10389-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑对一种部分观测随机伏特拉方程(SVE)进行贝叶斯参数推断。SVE 存在于物理学和数学金融学等许多领域。在数学金融领域,它们可以用来表示未观测波动过程中的长记忆。在许多实际案例中,SVE 必须进行时间离散化,然后根据与时间离散化过程相关的后验结果进行参数推断。根据最近对 SVE 时间离散化的研究(如 Richard 等人在 Stoch Proc Appl 141:109-138, 2021 年),我们使用 Euler-Maruyama 方法进行上述离散化。然后,我们展示了多级马尔科夫链蒙特卡罗 (MCMC) 方法(Jasra 等人,载于 SIAM J Sci Comp 40:A887-A902, 2018)如何应用于这种情况。在我们研究的例子中,我们给出了一个证明,表明实现均方误差(MSE)为 \(\mathcal {O}(\epsilon ^2)\), \(\epsilon >0\)的代价是 \(\mathcal {O}(\epsilon ^{-\tfrac{4}{2H+1}}), 其中 H 是赫斯特参数。如果使用单级 MCMC 方法,则达到相同 MSE 的成本为 \(\mathcal {O}(\epsilon ^{-\tfrac{2(2H+3)}{2H+1}})\) 。我们结合状态空间模型和随机波动模型来说明这些结果,其中随机波动模型应用于真实数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bayesian parameter inference for partially observed stochastic volterra equations

Bayesian parameter inference for partially observed stochastic volterra equations

In this article we consider Bayesian parameter inference for a type of partially observed stochastic Volterra equation (SVE). SVEs are found in many areas such as physics and mathematical finance. In the latter field they can be used to represent long memory in unobserved volatility processes. In many cases of practical interest, SVEs must be time-discretized and then parameter inference is based upon the posterior associated to this time-discretized process. Based upon recent studies on time-discretization of SVEs (e.g. Richard et al. in Stoch Proc Appl 141:109–138, 2021) we use Euler–Maruyama methods for the afore-mentioned discretization. We then show how multilevel Markov chain Monte Carlo (MCMC) methods (Jasra et al. in SIAM J Sci Comp 40:A887–A902, 2018) can be applied in this context. In the examples we study, we give a proof that shows that the cost to achieve a mean square error (MSE) of \(\mathcal {O}(\epsilon ^2)\), \(\epsilon >0\), is \(\mathcal {O}(\epsilon ^{-\tfrac{4}{2H+1}})\), where H is the Hurst parameter. If one uses a single level MCMC method then the cost is \(\mathcal {O}(\epsilon ^{-\tfrac{2(2H+3)}{2H+1}})\) to achieve the same MSE. We illustrate these results in the context of state-space and stochastic volatility models, with the latter applied to real data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信