曲率上界的测地完全空间中的极值子集

IF 0.9 3区 数学 Q2 MATHEMATICS
Tadashi Fujioka
{"title":"曲率上界的测地完全空间中的极值子集","authors":"Tadashi Fujioka","doi":"10.1515/agms-2023-0104","DOIUrl":null,"url":null,"abstract":"We introduce the notion of an extremal subset in a geodesically complete space with curvature bounded above, i.e., a GCBA space. This is an analog of an extremal subset in an Alexandrov space with curvature bounded below introduced by Perelman and Petrunin. We prove that under an additional assumption, the set of topological singularities in a GCBA space forms an extremal subset. We also exhibit some structural properties of extremal subsets in GCBA spaces.","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"11 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal subsets in geodesically complete spaces with curvature bounded above\",\"authors\":\"Tadashi Fujioka\",\"doi\":\"10.1515/agms-2023-0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the notion of an extremal subset in a geodesically complete space with curvature bounded above, i.e., a GCBA space. This is an analog of an extremal subset in an Alexandrov space with curvature bounded below introduced by Perelman and Petrunin. We prove that under an additional assumption, the set of topological singularities in a GCBA space forms an extremal subset. We also exhibit some structural properties of extremal subsets in GCBA spaces.\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2023-0104\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2023-0104","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了曲率在上方有界的大地完全空间(即 GCBA 空间)中极值子集的概念。这与佩雷尔曼和彼得鲁宁提出的曲率在下方有界的亚历山德罗夫空间中的极值子集类似。我们证明,在一个附加假设下,GCBA 空间中的拓扑奇点集合形成了一个极值子集。我们还展示了 GCBA 空间中极值子集的一些结构性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal subsets in geodesically complete spaces with curvature bounded above
We introduce the notion of an extremal subset in a geodesically complete space with curvature bounded above, i.e., a GCBA space. This is an analog of an extremal subset in an Alexandrov space with curvature bounded below introduced by Perelman and Petrunin. We prove that under an additional assumption, the set of topological singularities in a GCBA space forms an extremal subset. We also exhibit some structural properties of extremal subsets in GCBA spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信