非 Lipschitz 边界上静止 Navier-Stokes 方程的大尺度正则性

IF 1.8 1区 数学 Q1 MATHEMATICS
Mitsuo Higaki, Christophe Prange, Jinping Zhuge
{"title":"非 Lipschitz 边界上静止 Navier-Stokes 方程的大尺度正则性","authors":"Mitsuo Higaki, Christophe Prange, Jinping Zhuge","doi":"10.2140/apde.2024.17.171","DOIUrl":null,"url":null,"abstract":"<p>We address the large-scale regularity theory for the stationary Navier–Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable to the mathematical analysis of the Navier–Stokes equations. We prove a large-scale Calderón–Zygmund estimate, a large-scale Lipschitz estimate, and large-scale higher-order regularity estimates, namely, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> estimates. These nice regularity results are inherited only at mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> regularity is obtained by using first-order boundary layers constructed via a new argument. The large-scale <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> regularity relies on the construction of second-order boundary layers, which allows for certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a multiscale problem, with improved regularity at or above a certain scale. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"14 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale regularity for the stationary Navier–Stokes equations over non-Lipschitz boundaries\",\"authors\":\"Mitsuo Higaki, Christophe Prange, Jinping Zhuge\",\"doi\":\"10.2140/apde.2024.17.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We address the large-scale regularity theory for the stationary Navier–Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable to the mathematical analysis of the Navier–Stokes equations. We prove a large-scale Calderón–Zygmund estimate, a large-scale Lipschitz estimate, and large-scale higher-order regularity estimates, namely, <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> estimates. These nice regularity results are inherited only at mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> regularity is obtained by using first-order boundary layers constructed via a new argument. The large-scale <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>γ</mi></mrow></msup></math> regularity relies on the construction of second-order boundary layers, which allows for certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a multiscale problem, with improved regularity at or above a certain scale. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.171\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.171","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了高度振荡凹凸约翰域中静止纳维-斯托克斯方程的大尺度正则性理论。这些畴在微观尺度上非常粗糙,可能存在分形或尖角,但适合对纳维-斯托克斯方程进行数学分析。我们证明了大尺度卡尔德龙-齐格蒙估计、大尺度利普希兹估计和大尺度高阶正则性估计,即 C1,γ 和 C2,γ 估计。这些很好的正则性结果只在介观尺度上得到继承,而在微观尺度上明显失效。我们强调,大尺度 C1,γ 正则性是通过使用新论证构建的一阶边界层获得的。大尺度 C2,γ 正则性依赖于二阶边界层的构造,它允许某些边界数据在空间无穷大处线性增长。据我们所知,我们的工作是首次进行这样的分析。在定量均质化方面的许多工作之后,我们的结果强烈主张将流体方程解的边界正则性视为一个多尺度问题,并在一定尺度或以上提高正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale regularity for the stationary Navier–Stokes equations over non-Lipschitz boundaries

We address the large-scale regularity theory for the stationary Navier–Stokes equations in highly oscillating bumpy John domains. These domains are very rough, possibly with fractals or cusps, at the microscopic scale, but are amenable to the mathematical analysis of the Navier–Stokes equations. We prove a large-scale Calderón–Zygmund estimate, a large-scale Lipschitz estimate, and large-scale higher-order regularity estimates, namely, C1,γ and C2,γ estimates. These nice regularity results are inherited only at mesoscopic scales, and clearly fail in general at the microscopic scales. We emphasize that the large-scale C1,γ regularity is obtained by using first-order boundary layers constructed via a new argument. The large-scale C2,γ regularity relies on the construction of second-order boundary layers, which allows for certain boundary data with linear growth at spatial infinity. To the best of our knowledge, our work is the first to carry out such an analysis. In the wake of many works in quantitative homogenization, our results strongly advocate in favor of considering the boundary regularity of the solutions to fluid equations as a multiscale problem, with improved regularity at or above a certain scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis & PDE
Analysis & PDE MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
6 months
期刊介绍: APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信