Debajyoty Banik, Rahul Paul, Rajkumar Singh Rathore, Rutvij H. Jhaveri
{"title":"利用集合管道法改进回归分析,实现跨领域应用","authors":"Debajyoty Banik, Rahul Paul, Rajkumar Singh Rathore, Rutvij H. Jhaveri","doi":"10.1145/3645110","DOIUrl":null,"url":null,"abstract":"<p>In this research, we introduce two new machine learning regression methods: the Ensemble Average and the Pipelined Model. These methods aim to enhance traditional regression analysis for predictive tasks and have undergone thorough evaluation across three datasets: Kaggle House Price, Boston House Price, and California Housing, using various performance metrics. The results consistently show that our models outperform existing methods in terms of accuracy and reliability across all three datasets. The Pipelined Model, in particular, is notable for its ability to combine predictions from multiple models, leading to higher accuracy and impressive scalability. This scalability allows for their application in diverse fields like technology, finance, and healthcare. Furthermore, these models can be adapted for real-time and streaming data analysis, making them valuable for applications such as fraud detection, stock market prediction, and IoT sensor data analysis. Enhancements to the models also make them suitable for big data applications, ensuring their relevance for large datasets and distributed computing environments. It’s important to acknowledge some limitations of our models, including potential data biases, specific assumptions, increased complexity, and challenges related to interpretability when using them in practical scenarios. Nevertheless, these innovations advance predictive modeling, and our comprehensive evaluation underscores their potential to provide increased accuracy and reliability across a wide range of applications. The results indicate that the proposed models outperform existing models in terms of accuracy and robustness for all three datasets. The source code can be found at https://huggingface.co/DebajyotyBanik/Ensemble-Pipelined-Regression/tree/main.</p>","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":"16 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Regression Analysis with Ensemble Pipeline Approach for Applications Across Multiple Domains\",\"authors\":\"Debajyoty Banik, Rahul Paul, Rajkumar Singh Rathore, Rutvij H. Jhaveri\",\"doi\":\"10.1145/3645110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this research, we introduce two new machine learning regression methods: the Ensemble Average and the Pipelined Model. These methods aim to enhance traditional regression analysis for predictive tasks and have undergone thorough evaluation across three datasets: Kaggle House Price, Boston House Price, and California Housing, using various performance metrics. The results consistently show that our models outperform existing methods in terms of accuracy and reliability across all three datasets. The Pipelined Model, in particular, is notable for its ability to combine predictions from multiple models, leading to higher accuracy and impressive scalability. This scalability allows for their application in diverse fields like technology, finance, and healthcare. Furthermore, these models can be adapted for real-time and streaming data analysis, making them valuable for applications such as fraud detection, stock market prediction, and IoT sensor data analysis. Enhancements to the models also make them suitable for big data applications, ensuring their relevance for large datasets and distributed computing environments. It’s important to acknowledge some limitations of our models, including potential data biases, specific assumptions, increased complexity, and challenges related to interpretability when using them in practical scenarios. Nevertheless, these innovations advance predictive modeling, and our comprehensive evaluation underscores their potential to provide increased accuracy and reliability across a wide range of applications. The results indicate that the proposed models outperform existing models in terms of accuracy and robustness for all three datasets. The source code can be found at https://huggingface.co/DebajyotyBanik/Ensemble-Pipelined-Regression/tree/main.</p>\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3645110\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3645110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved Regression Analysis with Ensemble Pipeline Approach for Applications Across Multiple Domains
In this research, we introduce two new machine learning regression methods: the Ensemble Average and the Pipelined Model. These methods aim to enhance traditional regression analysis for predictive tasks and have undergone thorough evaluation across three datasets: Kaggle House Price, Boston House Price, and California Housing, using various performance metrics. The results consistently show that our models outperform existing methods in terms of accuracy and reliability across all three datasets. The Pipelined Model, in particular, is notable for its ability to combine predictions from multiple models, leading to higher accuracy and impressive scalability. This scalability allows for their application in diverse fields like technology, finance, and healthcare. Furthermore, these models can be adapted for real-time and streaming data analysis, making them valuable for applications such as fraud detection, stock market prediction, and IoT sensor data analysis. Enhancements to the models also make them suitable for big data applications, ensuring their relevance for large datasets and distributed computing environments. It’s important to acknowledge some limitations of our models, including potential data biases, specific assumptions, increased complexity, and challenges related to interpretability when using them in practical scenarios. Nevertheless, these innovations advance predictive modeling, and our comprehensive evaluation underscores their potential to provide increased accuracy and reliability across a wide range of applications. The results indicate that the proposed models outperform existing models in terms of accuracy and robustness for all three datasets. The source code can be found at https://huggingface.co/DebajyotyBanik/Ensemble-Pipelined-Regression/tree/main.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.