{"title":"论完全非线性积分微分算子族:从分数拉普拉斯到非局部蒙日-安培","authors":"Luis A. Caffarelli, María Soria-Carro","doi":"10.2140/apde.2024.17.243","DOIUrl":null,"url":null,"abstract":"<p>We introduce a new family of intermediate operators between the fractional Laplacian and the nonlocal Monge–Ampère introduced by Caffarelli and Silvestre that are given by infimums of integrodifferential operators. Using rearrangement techniques, we obtain representation formulas and give a connection to optimal transport. Finally, we consider a global Poisson problem prescribing data at infinity, and prove existence, uniqueness, and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math>-regularity of solutions in the full space. </p>","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"38 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a family of fully nonlinear integrodifferential operators : from fractional Laplacian to nonlocal Monge–Ampère\",\"authors\":\"Luis A. Caffarelli, María Soria-Carro\",\"doi\":\"10.2140/apde.2024.17.243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a new family of intermediate operators between the fractional Laplacian and the nonlocal Monge–Ampère introduced by Caffarelli and Silvestre that are given by infimums of integrodifferential operators. Using rearrangement techniques, we obtain representation formulas and give a connection to optimal transport. Finally, we consider a global Poisson problem prescribing data at infinity, and prove existence, uniqueness, and <math display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math>-regularity of solutions in the full space. </p>\",\"PeriodicalId\":49277,\"journal\":{\"name\":\"Analysis & PDE\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis & PDE\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/apde.2024.17.243\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/apde.2024.17.243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
On a family of fully nonlinear integrodifferential operators : from fractional Laplacian to nonlocal Monge–Ampère
We introduce a new family of intermediate operators between the fractional Laplacian and the nonlocal Monge–Ampère introduced by Caffarelli and Silvestre that are given by infimums of integrodifferential operators. Using rearrangement techniques, we obtain representation formulas and give a connection to optimal transport. Finally, we consider a global Poisson problem prescribing data at infinity, and prove existence, uniqueness, and -regularity of solutions in the full space.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.