{"title":"一些无爱音节变体","authors":"","doi":"10.1007/s00233-024-10411-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We study some nil-ai-semiring varieties. We establish a model for the free object in the variety <span> <span>\\(\\textbf{FC}\\)</span> </span> generated by all commutative flat semirings. Also, we provide two sufficient conditions under which a finite ai-semiring is nonfinitely based. As a consequence, we show that the power semiring <span> <span>\\(P_{\\scriptstyle {\\dot{S}}_{c}(W)}\\)</span> </span> of the finite nil-semigroup <span> <span>\\({\\dot{S}}_{c}(W)\\)</span> </span> is nonfinitely based, where <em>W</em> is a finite set of words in the free commutative semigroup <span> <span>\\(X_{c}^{+}\\)</span> </span> over an alphabet <em>X</em>, whenever the maximum of lengths of words in <em>W</em> is <span> <span>\\(k\\ge 3\\)</span> </span> and <em>W</em> does not contain the <em>k</em>th power of a letter. This partially answers a problem raised by Jackson et al. (J Algebr 611: 211–245, 2022).</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some nil-ai-semiring varieties\",\"authors\":\"\",\"doi\":\"10.1007/s00233-024-10411-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>We study some nil-ai-semiring varieties. We establish a model for the free object in the variety <span> <span>\\\\(\\\\textbf{FC}\\\\)</span> </span> generated by all commutative flat semirings. Also, we provide two sufficient conditions under which a finite ai-semiring is nonfinitely based. As a consequence, we show that the power semiring <span> <span>\\\\(P_{\\\\scriptstyle {\\\\dot{S}}_{c}(W)}\\\\)</span> </span> of the finite nil-semigroup <span> <span>\\\\({\\\\dot{S}}_{c}(W)\\\\)</span> </span> is nonfinitely based, where <em>W</em> is a finite set of words in the free commutative semigroup <span> <span>\\\\(X_{c}^{+}\\\\)</span> </span> over an alphabet <em>X</em>, whenever the maximum of lengths of words in <em>W</em> is <span> <span>\\\\(k\\\\ge 3\\\\)</span> </span> and <em>W</em> does not contain the <em>k</em>th power of a letter. This partially answers a problem raised by Jackson et al. (J Algebr 611: 211–245, 2022).</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00233-024-10411-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10411-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
摘要 我们研究了一些 nil-ai-semiring varieties。我们为所有交换平半音生成的 \(\textbf{FC}\) 中的自由客体建立了一个模型。同时,我们还提供了有限ai-semiring是非无限基础的两个充分条件。因此,我们证明了有限 nil semigroup \({\dot{S}}_{c}(W)}\) 的 power semiring \(P_{\scriptstyle {\dot{S}}_{c}(W)}\) 是非无限基于的、其中,W 是字母表 X 上自由交换半群 \(X_{c}^{+}\)中单词的有限集合,只要 W 中单词长度的最大值是 \(k\ge 3\),并且 W 不包含字母的第 k 次幂。这部分回答了杰克逊等人提出的一个问题(J Algebr 611: 211-245, 2022)。
We study some nil-ai-semiring varieties. We establish a model for the free object in the variety \(\textbf{FC}\) generated by all commutative flat semirings. Also, we provide two sufficient conditions under which a finite ai-semiring is nonfinitely based. As a consequence, we show that the power semiring \(P_{\scriptstyle {\dot{S}}_{c}(W)}\) of the finite nil-semigroup \({\dot{S}}_{c}(W)\) is nonfinitely based, where W is a finite set of words in the free commutative semigroup \(X_{c}^{+}\) over an alphabet X, whenever the maximum of lengths of words in W is \(k\ge 3\) and W does not contain the kth power of a letter. This partially answers a problem raised by Jackson et al. (J Algebr 611: 211–245, 2022).