Daniel Yamín, Andrés L. Medaglia, Arun Prakash Akkinepally
{"title":"城市交通网络的可靠路由策略","authors":"Daniel Yamín, Andrés L. Medaglia, Arun Prakash Akkinepally","doi":"10.1287/trsc.2023.0013","DOIUrl":null,"url":null,"abstract":"The problem of finding the most reliable routing strategy on urban transportation networks refers to determining the time-adaptive routing policy that maximizes the probability of on-time arrival at a destination given an arrival time threshold. The problem is defined on a stochastic and time-dependent network that captures real-world transportation systems’ inherent uncertainty and dynamism. To solve this problem, we present a dynamic programming–based algorithm that benefits from a node-time pairs queue implementation. In addition to improving the computational running time in most cases, this implementation supports different queue disciplines, leading to different algorithmic approaches: label-correcting and label-setting methods. We prove the correctness of the algorithm and derive its worst case time complexity. We present computational experiments over real-world, large-scale transportation networks with up to [Formula: see text] nodes, showing that the algorithm is a viable alternative to existing state-of-the-art methods. It can be four times faster for relatively tight arrival time thresholds and is competitive for looser ones. We also present experiments assessing the different queue disciplines used within the algorithm, the gains of the node–time pairs queue implementation, and comparing optimal strategies obtained from reliability and travel time objectives.","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"3 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliable Routing Strategies on Urban Transportation Networks\",\"authors\":\"Daniel Yamín, Andrés L. Medaglia, Arun Prakash Akkinepally\",\"doi\":\"10.1287/trsc.2023.0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of finding the most reliable routing strategy on urban transportation networks refers to determining the time-adaptive routing policy that maximizes the probability of on-time arrival at a destination given an arrival time threshold. The problem is defined on a stochastic and time-dependent network that captures real-world transportation systems’ inherent uncertainty and dynamism. To solve this problem, we present a dynamic programming–based algorithm that benefits from a node-time pairs queue implementation. In addition to improving the computational running time in most cases, this implementation supports different queue disciplines, leading to different algorithmic approaches: label-correcting and label-setting methods. We prove the correctness of the algorithm and derive its worst case time complexity. We present computational experiments over real-world, large-scale transportation networks with up to [Formula: see text] nodes, showing that the algorithm is a viable alternative to existing state-of-the-art methods. It can be four times faster for relatively tight arrival time thresholds and is competitive for looser ones. We also present experiments assessing the different queue disciplines used within the algorithm, the gains of the node–time pairs queue implementation, and comparing optimal strategies obtained from reliability and travel time objectives.\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2023.0013\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2023.0013","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Reliable Routing Strategies on Urban Transportation Networks
The problem of finding the most reliable routing strategy on urban transportation networks refers to determining the time-adaptive routing policy that maximizes the probability of on-time arrival at a destination given an arrival time threshold. The problem is defined on a stochastic and time-dependent network that captures real-world transportation systems’ inherent uncertainty and dynamism. To solve this problem, we present a dynamic programming–based algorithm that benefits from a node-time pairs queue implementation. In addition to improving the computational running time in most cases, this implementation supports different queue disciplines, leading to different algorithmic approaches: label-correcting and label-setting methods. We prove the correctness of the algorithm and derive its worst case time complexity. We present computational experiments over real-world, large-scale transportation networks with up to [Formula: see text] nodes, showing that the algorithm is a viable alternative to existing state-of-the-art methods. It can be four times faster for relatively tight arrival time thresholds and is competitive for looser ones. We also present experiments assessing the different queue disciplines used within the algorithm, the gains of the node–time pairs queue implementation, and comparing optimal strategies obtained from reliability and travel time objectives.
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.