计算完全不可复数的共轭类:双指数增长

Pub Date : 2024-02-07 DOI:10.1007/s10711-024-00885-4
Ilya Kapovich, Catherine Pfaff
{"title":"计算完全不可复数的共轭类:双指数增长","authors":"Ilya Kapovich, Catherine Pfaff","doi":"10.1007/s10711-024-00885-4","DOIUrl":null,"url":null,"abstract":"<p>Inspired by results of Eskin and Mirzakhani (J Mod Dyn 5(1):71–105, 2011) counting closed geodesics of length <span>\\(\\le L\\)</span> in the moduli space of a fixed closed surface, we consider a similar question in the <span>\\(Out (F_r)\\)</span> setting. The Eskin-Mirzakhani result can be equivalently stated in terms of counting the number of conjugacy classes (within the mapping class group) of pseudo-Anosovs whose dilatations have natural logarithm <span>\\(\\le L\\)</span>. Let <span>\\({\\mathfrak {N}}_r(L)\\)</span> denote the number of <span>\\(Out (F_r)\\)</span>-conjugacy classes of fully irreducibles satisfying that the natural logarithm of their dilatation is <span>\\(\\le L\\)</span>. We prove for <span>\\(r\\ge 3\\)</span> that as <span>\\(L\\rightarrow \\infty \\)</span>, the number <span>\\({\\mathfrak {N}}_r(L)\\)</span> has double exponential (in <i>L</i>) lower and upper bounds. These bounds reveal behavior not present in the surface setting or in classical hyperbolic dynamical systems.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting conjugacy classes of fully irreducibles: double exponential growth\",\"authors\":\"Ilya Kapovich, Catherine Pfaff\",\"doi\":\"10.1007/s10711-024-00885-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by results of Eskin and Mirzakhani (J Mod Dyn 5(1):71–105, 2011) counting closed geodesics of length <span>\\\\(\\\\le L\\\\)</span> in the moduli space of a fixed closed surface, we consider a similar question in the <span>\\\\(Out (F_r)\\\\)</span> setting. The Eskin-Mirzakhani result can be equivalently stated in terms of counting the number of conjugacy classes (within the mapping class group) of pseudo-Anosovs whose dilatations have natural logarithm <span>\\\\(\\\\le L\\\\)</span>. Let <span>\\\\({\\\\mathfrak {N}}_r(L)\\\\)</span> denote the number of <span>\\\\(Out (F_r)\\\\)</span>-conjugacy classes of fully irreducibles satisfying that the natural logarithm of their dilatation is <span>\\\\(\\\\le L\\\\)</span>. We prove for <span>\\\\(r\\\\ge 3\\\\)</span> that as <span>\\\\(L\\\\rightarrow \\\\infty \\\\)</span>, the number <span>\\\\({\\\\mathfrak {N}}_r(L)\\\\)</span> has double exponential (in <i>L</i>) lower and upper bounds. These bounds reveal behavior not present in the surface setting or in classical hyperbolic dynamical systems.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00885-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00885-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受 Eskin 和 Mirzakhani(J Mod Dyn 5(1):71-105,2011)计算固定封闭曲面模空间中长度为 (\le L\ )的封闭大地线的结果的启发,我们考虑了在(Out (F_r)\)设置中的类似问题。埃斯金-米尔扎哈尼的结果可以等价地用计算其扩张具有自然对数()的伪阿诺索夫的共轭类(在映射类群内)的数量来表示。让 \({\mathfrak {N}}_r(L)\) 表示满足其扩张的自然对数是 \(Out (F_r)\) 的完全不可还原的共轭类的数量。对于 \(r\ge 3\) 我们证明,随着 \(L\rightarrow \infty \),数 \({\mathfrak {N}}_r(L)\) 具有双指数(在 L 中)下限和上限。这些界限揭示了曲面设置或经典双曲动力学系统中不存在的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Counting conjugacy classes of fully irreducibles: double exponential growth

Inspired by results of Eskin and Mirzakhani (J Mod Dyn 5(1):71–105, 2011) counting closed geodesics of length \(\le L\) in the moduli space of a fixed closed surface, we consider a similar question in the \(Out (F_r)\) setting. The Eskin-Mirzakhani result can be equivalently stated in terms of counting the number of conjugacy classes (within the mapping class group) of pseudo-Anosovs whose dilatations have natural logarithm \(\le L\). Let \({\mathfrak {N}}_r(L)\) denote the number of \(Out (F_r)\)-conjugacy classes of fully irreducibles satisfying that the natural logarithm of their dilatation is \(\le L\). We prove for \(r\ge 3\) that as \(L\rightarrow \infty \), the number \({\mathfrak {N}}_r(L)\) has double exponential (in L) lower and upper bounds. These bounds reveal behavior not present in the surface setting or in classical hyperbolic dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信