{"title":"循环加载下接合花岗岩的动态特性和动态响应模型","authors":"Xiaobin Ding, Junxing Zhao, Yaojun Dong","doi":"10.1155/2024/7258680","DOIUrl":null,"url":null,"abstract":"The present study investigates the dynamic properties of granite samples with varying degrees of defects through triaxial cyclic loading experiments conducted under different conditions, including varied confining pressures, loading frequencies, dynamic stress amplitudes, and number of cycles, and the dynamic response model of granite samples influenced by the confining pressure and frequency are constructed. The results show that the dynamic elastic modulus of granite increases, but its dynamic damping ratio decreases as the confining pressure increases. The dynamic elastic modulus and dynamic damping ratio of the granite increase as increasing frequency. The dynamic elastic modulus of granite increases with the increasing dynamic stress amplitude while its dynamic damping ratio decreases. The dynamic elastic modulus and dynamic damping ratio of granite decreases with an increasing number of cycles. The modified Duncan–Chang model can well describe the dynamical behavior of granite influenced by the confining pressure and frequency. The correlation coefficients of the modified model reached 0.98. It is worth saying that the correlation coefficient of the model is low at 20 Hz frequency. It indicates that frequency has a strong effect on the dynamic response of granite compared with the confining pressure. These data and models will be applied to the next step of detection and prediction of the tunnel rock stress state.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Properties and Dynamic Response Model of Jointed Granites by Cyclic Loading\",\"authors\":\"Xiaobin Ding, Junxing Zhao, Yaojun Dong\",\"doi\":\"10.1155/2024/7258680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study investigates the dynamic properties of granite samples with varying degrees of defects through triaxial cyclic loading experiments conducted under different conditions, including varied confining pressures, loading frequencies, dynamic stress amplitudes, and number of cycles, and the dynamic response model of granite samples influenced by the confining pressure and frequency are constructed. The results show that the dynamic elastic modulus of granite increases, but its dynamic damping ratio decreases as the confining pressure increases. The dynamic elastic modulus and dynamic damping ratio of the granite increase as increasing frequency. The dynamic elastic modulus of granite increases with the increasing dynamic stress amplitude while its dynamic damping ratio decreases. The dynamic elastic modulus and dynamic damping ratio of granite decreases with an increasing number of cycles. The modified Duncan–Chang model can well describe the dynamical behavior of granite influenced by the confining pressure and frequency. The correlation coefficients of the modified model reached 0.98. It is worth saying that the correlation coefficient of the model is low at 20 Hz frequency. It indicates that frequency has a strong effect on the dynamic response of granite compared with the confining pressure. These data and models will be applied to the next step of detection and prediction of the tunnel rock stress state.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7258680\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7258680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Dynamic Properties and Dynamic Response Model of Jointed Granites by Cyclic Loading
The present study investigates the dynamic properties of granite samples with varying degrees of defects through triaxial cyclic loading experiments conducted under different conditions, including varied confining pressures, loading frequencies, dynamic stress amplitudes, and number of cycles, and the dynamic response model of granite samples influenced by the confining pressure and frequency are constructed. The results show that the dynamic elastic modulus of granite increases, but its dynamic damping ratio decreases as the confining pressure increases. The dynamic elastic modulus and dynamic damping ratio of the granite increase as increasing frequency. The dynamic elastic modulus of granite increases with the increasing dynamic stress amplitude while its dynamic damping ratio decreases. The dynamic elastic modulus and dynamic damping ratio of granite decreases with an increasing number of cycles. The modified Duncan–Chang model can well describe the dynamical behavior of granite influenced by the confining pressure and frequency. The correlation coefficients of the modified model reached 0.98. It is worth saying that the correlation coefficient of the model is low at 20 Hz frequency. It indicates that frequency has a strong effect on the dynamic response of granite compared with the confining pressure. These data and models will be applied to the next step of detection and prediction of the tunnel rock stress state.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.