循环加载下接合花岗岩的动态特性和动态响应模型

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaobin Ding, Junxing Zhao, Yaojun Dong
{"title":"循环加载下接合花岗岩的动态特性和动态响应模型","authors":"Xiaobin Ding, Junxing Zhao, Yaojun Dong","doi":"10.1155/2024/7258680","DOIUrl":null,"url":null,"abstract":"The present study investigates the dynamic properties of granite samples with varying degrees of defects through triaxial cyclic loading experiments conducted under different conditions, including varied confining pressures, loading frequencies, dynamic stress amplitudes, and number of cycles, and the dynamic response model of granite samples influenced by the confining pressure and frequency are constructed. The results show that the dynamic elastic modulus of granite increases, but its dynamic damping ratio decreases as the confining pressure increases. The dynamic elastic modulus and dynamic damping ratio of the granite increase as increasing frequency. The dynamic elastic modulus of granite increases with the increasing dynamic stress amplitude while its dynamic damping ratio decreases. The dynamic elastic modulus and dynamic damping ratio of granite decreases with an increasing number of cycles. The modified Duncan–Chang model can well describe the dynamical behavior of granite influenced by the confining pressure and frequency. The correlation coefficients of the modified model reached 0.98. It is worth saying that the correlation coefficient of the model is low at 20 Hz frequency. It indicates that frequency has a strong effect on the dynamic response of granite compared with the confining pressure. These data and models will be applied to the next step of detection and prediction of the tunnel rock stress state.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Properties and Dynamic Response Model of Jointed Granites by Cyclic Loading\",\"authors\":\"Xiaobin Ding, Junxing Zhao, Yaojun Dong\",\"doi\":\"10.1155/2024/7258680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study investigates the dynamic properties of granite samples with varying degrees of defects through triaxial cyclic loading experiments conducted under different conditions, including varied confining pressures, loading frequencies, dynamic stress amplitudes, and number of cycles, and the dynamic response model of granite samples influenced by the confining pressure and frequency are constructed. The results show that the dynamic elastic modulus of granite increases, but its dynamic damping ratio decreases as the confining pressure increases. The dynamic elastic modulus and dynamic damping ratio of the granite increase as increasing frequency. The dynamic elastic modulus of granite increases with the increasing dynamic stress amplitude while its dynamic damping ratio decreases. The dynamic elastic modulus and dynamic damping ratio of granite decreases with an increasing number of cycles. The modified Duncan–Chang model can well describe the dynamical behavior of granite influenced by the confining pressure and frequency. The correlation coefficients of the modified model reached 0.98. It is worth saying that the correlation coefficient of the model is low at 20 Hz frequency. It indicates that frequency has a strong effect on the dynamic response of granite compared with the confining pressure. These data and models will be applied to the next step of detection and prediction of the tunnel rock stress state.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7258680\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7258680","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过在不同条件下进行三轴循环加载实验,包括不同的约束压力、加载频率、动应力幅值和循环次数,研究了具有不同程度缺陷的花岗岩样品的动态特性,并构建了花岗岩样品受约束压力和频率影响的动态响应模型。结果表明,随着约束压力的增加,花岗岩的动态弹性模量增大,但动态阻尼比减小。花岗岩的动态弹性模量和动态阻尼比随着频率的增加而增加。花岗岩的动弹性模量随着动应力振幅的增大而增大,而其动阻尼比则随着动应力振幅的增大而减小。花岗岩的动态弹性模量和动态阻尼比随着循环次数的增加而减小。修正的 Duncan-Chang 模型能很好地描述花岗岩受约束压力和频率影响的动力学行为。修正模型的相关系数达到 0.98。值得注意的是,该模型在频率为 20 Hz 时相关系数较低。这表明,与约束压力相比,频率对花岗岩动态响应的影响更大。这些数据和模型将应用于下一步隧道岩石应力状态的检测和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Properties and Dynamic Response Model of Jointed Granites by Cyclic Loading
The present study investigates the dynamic properties of granite samples with varying degrees of defects through triaxial cyclic loading experiments conducted under different conditions, including varied confining pressures, loading frequencies, dynamic stress amplitudes, and number of cycles, and the dynamic response model of granite samples influenced by the confining pressure and frequency are constructed. The results show that the dynamic elastic modulus of granite increases, but its dynamic damping ratio decreases as the confining pressure increases. The dynamic elastic modulus and dynamic damping ratio of the granite increase as increasing frequency. The dynamic elastic modulus of granite increases with the increasing dynamic stress amplitude while its dynamic damping ratio decreases. The dynamic elastic modulus and dynamic damping ratio of granite decreases with an increasing number of cycles. The modified Duncan–Chang model can well describe the dynamical behavior of granite influenced by the confining pressure and frequency. The correlation coefficients of the modified model reached 0.98. It is worth saying that the correlation coefficient of the model is low at 20 Hz frequency. It indicates that frequency has a strong effect on the dynamic response of granite compared with the confining pressure. These data and models will be applied to the next step of detection and prediction of the tunnel rock stress state.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信