N. P. Kiselev, I. N. Kavun, V. I. Zapryagaev, R. A. Styazhkin
{"title":"内塔对带中心体喷嘴中射流参数的影响","authors":"N. P. Kiselev, I. N. Kavun, V. I. Zapryagaev, R. A. Styazhkin","doi":"10.1134/S0021894423060160","DOIUrl":null,"url":null,"abstract":"<p>A high-velocity flow in an axisymmetric nozzle containing a central body and pylons is studied. The influence of the geometry of the main and additional pylons on the gas-dynamic and thrust characteristics at the nozzle exit in the flow regime with <span>\\(n_{pr}= 2.25\\)</span> (<span>\\(n_{pr}\\)</span> is the ratio of the pressure in the settling chamber to the ambient pressure) is determined. Azimuthal nonuniformity of the flow at the nozzle exit is detected. The maximum azimuthal nonuniformity is observed in the wake behind the pylons. It is shown that a three-dimensional transonic flow is formed in the nozzle duct with the pylons mounted in the minimum free cross section; local supersonic regions closed by weak shock waves are formed in this flow. It is found that the formation of such a shock wave structure is responsible for nozzle thrust reduction by 12%.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"64 6","pages":"1058 - 1067"},"PeriodicalIF":0.5000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF INTERNAL PYLONS ON THE PARAMETERS OF THE JET FLOW IN A NOZZLE WITH A CENTRAL BODY\",\"authors\":\"N. P. Kiselev, I. N. Kavun, V. I. Zapryagaev, R. A. Styazhkin\",\"doi\":\"10.1134/S0021894423060160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A high-velocity flow in an axisymmetric nozzle containing a central body and pylons is studied. The influence of the geometry of the main and additional pylons on the gas-dynamic and thrust characteristics at the nozzle exit in the flow regime with <span>\\\\(n_{pr}= 2.25\\\\)</span> (<span>\\\\(n_{pr}\\\\)</span> is the ratio of the pressure in the settling chamber to the ambient pressure) is determined. Azimuthal nonuniformity of the flow at the nozzle exit is detected. The maximum azimuthal nonuniformity is observed in the wake behind the pylons. It is shown that a three-dimensional transonic flow is formed in the nozzle duct with the pylons mounted in the minimum free cross section; local supersonic regions closed by weak shock waves are formed in this flow. It is found that the formation of such a shock wave structure is responsible for nozzle thrust reduction by 12%.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"64 6\",\"pages\":\"1058 - 1067\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894423060160\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894423060160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
EFFECT OF INTERNAL PYLONS ON THE PARAMETERS OF THE JET FLOW IN A NOZZLE WITH A CENTRAL BODY
A high-velocity flow in an axisymmetric nozzle containing a central body and pylons is studied. The influence of the geometry of the main and additional pylons on the gas-dynamic and thrust characteristics at the nozzle exit in the flow regime with \(n_{pr}= 2.25\) (\(n_{pr}\) is the ratio of the pressure in the settling chamber to the ambient pressure) is determined. Azimuthal nonuniformity of the flow at the nozzle exit is detected. The maximum azimuthal nonuniformity is observed in the wake behind the pylons. It is shown that a three-dimensional transonic flow is formed in the nozzle duct with the pylons mounted in the minimum free cross section; local supersonic regions closed by weak shock waves are formed in this flow. It is found that the formation of such a shock wave structure is responsible for nozzle thrust reduction by 12%.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.