{"title":"基于全介电元表面的灵敏折射率传感器的高 Q 因子多重法诺共振","authors":"Zuxiong Liao, Yiping Huo, Tong Liu, Chen Zhao, Tao Zhang, Congmu Xu, Zhongyue Zhang","doi":"10.1117/1.jnp.18.016007","DOIUrl":null,"url":null,"abstract":"High-performance sensors can be efficiently realized with an all-dielectric metasurface using high-Q-factor Fano resonance. In this study, a numerical analysis of an all-dielectric metasurface with two square holes and one rectangular hole was conducted. Multiple Fano resonances with a high Q-factor and modulation depth were excited by a toroidal dipole, an electric quadrupole, and a magnetic dipole by breaking the symmetry of the structure. According to the computed results, the modulation depth approached 100%, and the maximum Q-factor reached 90,048. The sensing performance of the structure is also discussed. The structure had a maximum sensitivity and figure of merit of 275 nm/RIU and 1833 RIU−1, respectively. Owing to the unique structure, multiple Fano resonances can be achieved, with applications in multiwavelength communication, multichannel nanosensors, and optical modulators. These resonances have high Q-factors, high modulation depths, and small linewidths.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"20 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Q-factor multiple Fano resonance for sensitive refractive index sensors based on all-dielectric metasurface\",\"authors\":\"Zuxiong Liao, Yiping Huo, Tong Liu, Chen Zhao, Tao Zhang, Congmu Xu, Zhongyue Zhang\",\"doi\":\"10.1117/1.jnp.18.016007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance sensors can be efficiently realized with an all-dielectric metasurface using high-Q-factor Fano resonance. In this study, a numerical analysis of an all-dielectric metasurface with two square holes and one rectangular hole was conducted. Multiple Fano resonances with a high Q-factor and modulation depth were excited by a toroidal dipole, an electric quadrupole, and a magnetic dipole by breaking the symmetry of the structure. According to the computed results, the modulation depth approached 100%, and the maximum Q-factor reached 90,048. The sensing performance of the structure is also discussed. The structure had a maximum sensitivity and figure of merit of 275 nm/RIU and 1833 RIU−1, respectively. Owing to the unique structure, multiple Fano resonances can be achieved, with applications in multiwavelength communication, multichannel nanosensors, and optical modulators. These resonances have high Q-factors, high modulation depths, and small linewidths.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jnp.18.016007\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016007","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
High-Q-factor multiple Fano resonance for sensitive refractive index sensors based on all-dielectric metasurface
High-performance sensors can be efficiently realized with an all-dielectric metasurface using high-Q-factor Fano resonance. In this study, a numerical analysis of an all-dielectric metasurface with two square holes and one rectangular hole was conducted. Multiple Fano resonances with a high Q-factor and modulation depth were excited by a toroidal dipole, an electric quadrupole, and a magnetic dipole by breaking the symmetry of the structure. According to the computed results, the modulation depth approached 100%, and the maximum Q-factor reached 90,048. The sensing performance of the structure is also discussed. The structure had a maximum sensitivity and figure of merit of 275 nm/RIU and 1833 RIU−1, respectively. Owing to the unique structure, multiple Fano resonances can be achieved, with applications in multiwavelength communication, multichannel nanosensors, and optical modulators. These resonances have high Q-factors, high modulation depths, and small linewidths.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.