{"title":"在过氧化物中加入铝三角纳米结构增强吸收能力","authors":"Ziyu Chen, Xiangju Li, Cong Chen","doi":"10.1117/1.jnp.18.016004","DOIUrl":null,"url":null,"abstract":"Since the emergence of perovskite as an exceptional light absorbing material, it has made significant advancements in enhancing the efficiency of solar cells. Building upon this foundation, the reconfiguration of internal optical properties within perovskite holds the promise of further improving efficiency. We investigated the influence of metallic aluminum triangular nanostructures on absorption rates. Our findings indicate that the incorporation of stacked aluminum triangular nanostructures into perovskite thin films, along with controlled adjustments in the side length, can significantly enhance absorption rates. In conclusion, comparative tests revealed a remarkable 51% increase in the solar spectrum absorption rate for single layer perovskite thin film photovoltaic cells with a thickness of 200 nm.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of absorption by incorporating aluminum triangular nanostructures into perovskite\",\"authors\":\"Ziyu Chen, Xiangju Li, Cong Chen\",\"doi\":\"10.1117/1.jnp.18.016004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the emergence of perovskite as an exceptional light absorbing material, it has made significant advancements in enhancing the efficiency of solar cells. Building upon this foundation, the reconfiguration of internal optical properties within perovskite holds the promise of further improving efficiency. We investigated the influence of metallic aluminum triangular nanostructures on absorption rates. Our findings indicate that the incorporation of stacked aluminum triangular nanostructures into perovskite thin films, along with controlled adjustments in the side length, can significantly enhance absorption rates. In conclusion, comparative tests revealed a remarkable 51% increase in the solar spectrum absorption rate for single layer perovskite thin film photovoltaic cells with a thickness of 200 nm.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jnp.18.016004\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.jnp.18.016004","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancement of absorption by incorporating aluminum triangular nanostructures into perovskite
Since the emergence of perovskite as an exceptional light absorbing material, it has made significant advancements in enhancing the efficiency of solar cells. Building upon this foundation, the reconfiguration of internal optical properties within perovskite holds the promise of further improving efficiency. We investigated the influence of metallic aluminum triangular nanostructures on absorption rates. Our findings indicate that the incorporation of stacked aluminum triangular nanostructures into perovskite thin films, along with controlled adjustments in the side length, can significantly enhance absorption rates. In conclusion, comparative tests revealed a remarkable 51% increase in the solar spectrum absorption rate for single layer perovskite thin film photovoltaic cells with a thickness of 200 nm.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.