Feng Yuan, Huanan Liu, Shengjin Zhao, Mingjing Fan
{"title":"通过锆石 Hf 同位素测绘了解中国东北大兴安岭南部早白垩世地壳结构及其对成矿作用的影响","authors":"Feng Yuan, Huanan Liu, Shengjin Zhao, Mingjing Fan","doi":"10.1007/s12583-020-1100-9","DOIUrl":null,"url":null,"abstract":"<p>Voluminous Early Cretaceous granitoids and associated large-scale ore deposits are distributed within the southern Great Xing’ an Range (SGXR), NE China. Based on previously published geochronology and zircon Hf-isotope data, Hf isotope mapping is undertaken to improve our understanding of crustal architecture and its controls on ore deposits. The ore-related Early Cretaceous granitoids were sourced predominantly from juvenile crust, with the involvement of variable proportions of ancient crustal materials. The crustal architecture, as inferred from Hf isotopic contour maps, indicates two distinct Hf isotopic domains in SGXR, including (1) a higher-<i>ε</i><sub>Hf</sub> (+7 to +11) juvenile crust containing minor ancient crustal material, and (2) a lower-<i>ε</i><sub>Hf</sub> (+2 to +6) juvenile crust containing a greater proportion of ancient crustal materials. The Hf isotopic maps identify links between crustal architecture and regional metallogeny. Copper deposits and other deposits with significant Cu production are restricted mainly to the higher-<i>ε</i><sub>Hf</sub> juvenile crustal regions in the northern and eastern SGXR. Deposits dominated by other metals (e.g., Mo, Sn, W, Pb, Zn, and Ag) occur mainly in the lower- <i>ε</i><sub>Hf</sub> juvenile crustal regions in the southern and western SGXR. Interaction between juvenile crust-derived melts and ancient crustal components played an important role on the distribution of various ore metals.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"62 18 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zircon Hf Isotope Mapping for Understanding Crustal Architecture and Its Controls on Mineralization during Early Cretaceous in the Southern Great Xing’an Range, NE China\",\"authors\":\"Feng Yuan, Huanan Liu, Shengjin Zhao, Mingjing Fan\",\"doi\":\"10.1007/s12583-020-1100-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Voluminous Early Cretaceous granitoids and associated large-scale ore deposits are distributed within the southern Great Xing’ an Range (SGXR), NE China. Based on previously published geochronology and zircon Hf-isotope data, Hf isotope mapping is undertaken to improve our understanding of crustal architecture and its controls on ore deposits. The ore-related Early Cretaceous granitoids were sourced predominantly from juvenile crust, with the involvement of variable proportions of ancient crustal materials. The crustal architecture, as inferred from Hf isotopic contour maps, indicates two distinct Hf isotopic domains in SGXR, including (1) a higher-<i>ε</i><sub>Hf</sub> (+7 to +11) juvenile crust containing minor ancient crustal material, and (2) a lower-<i>ε</i><sub>Hf</sub> (+2 to +6) juvenile crust containing a greater proportion of ancient crustal materials. The Hf isotopic maps identify links between crustal architecture and regional metallogeny. Copper deposits and other deposits with significant Cu production are restricted mainly to the higher-<i>ε</i><sub>Hf</sub> juvenile crustal regions in the northern and eastern SGXR. Deposits dominated by other metals (e.g., Mo, Sn, W, Pb, Zn, and Ag) occur mainly in the lower- <i>ε</i><sub>Hf</sub> juvenile crustal regions in the southern and western SGXR. Interaction between juvenile crust-derived melts and ancient crustal components played an important role on the distribution of various ore metals.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":\"62 18 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-020-1100-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-020-1100-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Zircon Hf Isotope Mapping for Understanding Crustal Architecture and Its Controls on Mineralization during Early Cretaceous in the Southern Great Xing’an Range, NE China
Voluminous Early Cretaceous granitoids and associated large-scale ore deposits are distributed within the southern Great Xing’ an Range (SGXR), NE China. Based on previously published geochronology and zircon Hf-isotope data, Hf isotope mapping is undertaken to improve our understanding of crustal architecture and its controls on ore deposits. The ore-related Early Cretaceous granitoids were sourced predominantly from juvenile crust, with the involvement of variable proportions of ancient crustal materials. The crustal architecture, as inferred from Hf isotopic contour maps, indicates two distinct Hf isotopic domains in SGXR, including (1) a higher-εHf (+7 to +11) juvenile crust containing minor ancient crustal material, and (2) a lower-εHf (+2 to +6) juvenile crust containing a greater proportion of ancient crustal materials. The Hf isotopic maps identify links between crustal architecture and regional metallogeny. Copper deposits and other deposits with significant Cu production are restricted mainly to the higher-εHf juvenile crustal regions in the northern and eastern SGXR. Deposits dominated by other metals (e.g., Mo, Sn, W, Pb, Zn, and Ag) occur mainly in the lower- εHf juvenile crustal regions in the southern and western SGXR. Interaction between juvenile crust-derived melts and ancient crustal components played an important role on the distribution of various ore metals.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.