钢化分布的平移和调制不变希尔伯特空间的表征

IF 0.5 4区 数学 Q3 MATHEMATICS
Shubham R. Bais, Pinlodi Mohan, D. Venku Naidu
{"title":"钢化分布的平移和调制不变希尔伯特空间的表征","authors":"Shubham R. Bais,&nbsp;Pinlodi Mohan,&nbsp;D. Venku Naidu","doi":"10.1007/s00013-023-01964-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathcal {S}(\\mathbb {R}^n)\\)</span> be the Schwartz space and <span>\\(\\mathcal {S'}(\\mathbb {R}^n)\\)</span> be the space of tempered distributions on <span>\\(\\mathbb {R}^n\\)</span>. In this article, we prove that if <span>\\(\\mathcal {H} \\subseteq \\mathcal {S'}(\\mathbb {R}^n)\\)</span> is a non-zero Hilbert space of tempered distributions which is translation and modulation invariant such that </p><div><div><span>$$\\begin{aligned} |(f,g)| \\le C \\Vert f\\Vert _{\\mathcal {H}} \\end{aligned}$$</span></div></div><p>for some <span>\\(C&gt;0\\)</span> and for all <span>\\(f\\in \\mathcal {H}\\)</span>, then <span>\\(\\mathcal {H}=L^2(\\mathbb {R}^n)\\)</span>, where <span>\\(g(x) = e^{-x^2}\\)</span> for all <span>\\(x\\in \\mathbb {R}^n\\)</span> and <span>\\((\\cdot , \\cdot )\\)</span> denotes the standard duality pairing between <span>\\(\\mathcal {S'}(\\mathbb {R}^n)\\)</span> and <span>\\(\\mathcal {S}(\\mathbb {R}^n)\\)</span> with respect to which <span>\\((\\mathcal {S}(\\mathbb {R}^n))^*=\\mathcal {S'}(\\mathbb {R}^n)\\)</span>.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"122 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of translation and modulation invariant Hilbert space of tempered distributions\",\"authors\":\"Shubham R. Bais,&nbsp;Pinlodi Mohan,&nbsp;D. Venku Naidu\",\"doi\":\"10.1007/s00013-023-01964-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathcal {S}(\\\\mathbb {R}^n)\\\\)</span> be the Schwartz space and <span>\\\\(\\\\mathcal {S'}(\\\\mathbb {R}^n)\\\\)</span> be the space of tempered distributions on <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. In this article, we prove that if <span>\\\\(\\\\mathcal {H} \\\\subseteq \\\\mathcal {S'}(\\\\mathbb {R}^n)\\\\)</span> is a non-zero Hilbert space of tempered distributions which is translation and modulation invariant such that </p><div><div><span>$$\\\\begin{aligned} |(f,g)| \\\\le C \\\\Vert f\\\\Vert _{\\\\mathcal {H}} \\\\end{aligned}$$</span></div></div><p>for some <span>\\\\(C&gt;0\\\\)</span> and for all <span>\\\\(f\\\\in \\\\mathcal {H}\\\\)</span>, then <span>\\\\(\\\\mathcal {H}=L^2(\\\\mathbb {R}^n)\\\\)</span>, where <span>\\\\(g(x) = e^{-x^2}\\\\)</span> for all <span>\\\\(x\\\\in \\\\mathbb {R}^n\\\\)</span> and <span>\\\\((\\\\cdot , \\\\cdot )\\\\)</span> denotes the standard duality pairing between <span>\\\\(\\\\mathcal {S'}(\\\\mathbb {R}^n)\\\\)</span> and <span>\\\\(\\\\mathcal {S}(\\\\mathbb {R}^n)\\\\)</span> with respect to which <span>\\\\((\\\\mathcal {S}(\\\\mathbb {R}^n))^*=\\\\mathcal {S'}(\\\\mathbb {R}^n)\\\\)</span>.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"122 4\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01964-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01964-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathcal {S}(\mathbb {R}^n)\)是施瓦茨空间,\(\mathcal {S'}(\mathbb {R}^n)\)是\(\mathbb {R}^n\)上的节制分布空间。在本文中,我们将证明如果(mathcal {H}\)是一个非零的回调分布的希尔伯特空间,它是平移和调制不变的,这样$$\begin{aligned}((f,g)|(f,g)|(f,g)|(f,g)|(f,g))|(f,g)| le C \Vert f\Vert _{\mathcal {H}}\end{aligned}$$对于某个 C>;0) and for all \(f\in \mathcal {H}\), then \(\mathcal {H}=L^2(\mathbb {R}^n)\), where \(g(x) = e^{-x^2}\) for all \(x\in \mathbb {R}^n\) and\((\cdot 、\)表示 \(\mathcal {S'}(\mathbb {R}^n)\) 和 \(\mathcal {S}(\mathbb {R}^n)\) 之间的标准对偶配对,其中 \((\mathcal {S}(\mathbb {R}^n))^*=\mathcal {S'}(\mathbb {R}^n)\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of translation and modulation invariant Hilbert space of tempered distributions

Let \(\mathcal {S}(\mathbb {R}^n)\) be the Schwartz space and \(\mathcal {S'}(\mathbb {R}^n)\) be the space of tempered distributions on \(\mathbb {R}^n\). In this article, we prove that if \(\mathcal {H} \subseteq \mathcal {S'}(\mathbb {R}^n)\) is a non-zero Hilbert space of tempered distributions which is translation and modulation invariant such that

$$\begin{aligned} |(f,g)| \le C \Vert f\Vert _{\mathcal {H}} \end{aligned}$$

for some \(C>0\) and for all \(f\in \mathcal {H}\), then \(\mathcal {H}=L^2(\mathbb {R}^n)\), where \(g(x) = e^{-x^2}\) for all \(x\in \mathbb {R}^n\) and \((\cdot , \cdot )\) denotes the standard duality pairing between \(\mathcal {S'}(\mathbb {R}^n)\) and \(\mathcal {S}(\mathbb {R}^n)\) with respect to which \((\mathcal {S}(\mathbb {R}^n))^*=\mathcal {S'}(\mathbb {R}^n)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信