{"title":"论解析子范畴半径的有限性","authors":"Yuki Mifune","doi":"10.1007/s00013-024-01965-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a commutative Noetherian ring. Denote by <span>\\({\\text {mod}}R\\)</span> the category of finitely generated <i>R</i>-modules. In this paper, we investigate the finiteness of the radii of resolving subcategories of <span>\\({\\text {mod}}R\\)</span> with respect to a fixed semidualizing module. As an application, we give a partial positive answer to a conjecture of Dao and Takahashi: we prove that for a Cohen–Macaulay local ring <i>R</i>, a resolving subcategory of <span>\\({\\text {mod}}R\\)</span> has infinite radius whenever it contains a canonical module and a non-MCM module of finite injective dimension.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the finiteness of radii of resolving subcategories\",\"authors\":\"Yuki Mifune\",\"doi\":\"10.1007/s00013-024-01965-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>R</i> be a commutative Noetherian ring. Denote by <span>\\\\({\\\\text {mod}}R\\\\)</span> the category of finitely generated <i>R</i>-modules. In this paper, we investigate the finiteness of the radii of resolving subcategories of <span>\\\\({\\\\text {mod}}R\\\\)</span> with respect to a fixed semidualizing module. As an application, we give a partial positive answer to a conjecture of Dao and Takahashi: we prove that for a Cohen–Macaulay local ring <i>R</i>, a resolving subcategory of <span>\\\\({\\\\text {mod}}R\\\\)</span> has infinite radius whenever it contains a canonical module and a non-MCM module of finite injective dimension.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-01965-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-01965-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 R 是交换诺特环。用 \({\text {mod}}R\ 表示有限生成的 R 模块范畴。在本文中,我们将研究 \({\text {mod}R\) 的解析子类的半径相对于一个固定的半化模块的有限性。作为应用,我们给出了 Dao 和 Takahashi 的猜想的部分肯定答案:我们证明了对于科恩-麦考莱局部环 R,只要它包含一个规范化模块和一个有限注入维度的非 MCM 模块,\({\text {mod}R\) 的解析子类就有无限的半径。
On the finiteness of radii of resolving subcategories
Let R be a commutative Noetherian ring. Denote by \({\text {mod}}R\) the category of finitely generated R-modules. In this paper, we investigate the finiteness of the radii of resolving subcategories of \({\text {mod}}R\) with respect to a fixed semidualizing module. As an application, we give a partial positive answer to a conjecture of Dao and Takahashi: we prove that for a Cohen–Macaulay local ring R, a resolving subcategory of \({\text {mod}}R\) has infinite radius whenever it contains a canonical module and a non-MCM module of finite injective dimension.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.