关于 GL $_$2$$ 素幂模的里贝特定理

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"关于 GL $_$2$$ 素幂模的里贝特定理","authors":"","doi":"10.1007/s40687-023-00419-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <span> <span>\\(\\rho :G\\rightarrow {{\\,\\textrm{GL}\\,}}_2(K)\\)</span> </span> be a continuous representation of a compact group <em>G</em> over a complete discretely valued field <em>K</em> with ring of integers <span> <span>\\(\\mathcal {O}\\)</span> </span> and uniformiser <span> <span>\\(\\pi \\)</span> </span>. We prove that <span> <span>\\({{\\,\\textrm{tr}\\,}}\\rho \\)</span> </span> is reducible modulo <span> <span>\\(\\pi ^n\\)</span> </span> if and only if <span> <span>\\(\\rho \\)</span> </span> is reducible modulo <span> <span>\\(\\pi ^n\\)</span> </span>. More precisely, there exist characters <span> <span>\\(\\chi _1,\\chi _2 :G\\rightarrow (\\mathcal {O}/\\pi ^n\\mathcal {O})^\\times \\)</span> </span> such that <span> <span>\\(\\det (t - \\rho (g))\\equiv (t-\\chi _1(g))(t-\\chi _2(g))\\pmod {\\pi ^n}\\)</span> </span> for all <span> <span>\\(g\\in G\\)</span> </span>, if and only if there exists a <em>G</em>-stable lattice <span> <span>\\(\\Lambda \\subseteq K^2\\)</span> </span> such that <span> <span>\\(\\Lambda /\\pi ^n\\Lambda \\)</span> </span> contains a <em>G</em>-invariant, free, rank one <span> <span>\\(\\mathcal {O}/\\pi ^n\\mathcal {O}\\)</span> </span>-submodule. Our result applies in the case that <span> <span>\\(\\rho \\)</span> </span> is not residually multiplicity-free, in which case it answers a question of Bellaïche and Chenevier (J Algebra 410:501–525, 2014, pp. 524). As an application, we prove an optimal version of Ribet’s lemma, which gives a condition for the existence of a <em>G</em>-stable lattice <span> <span>\\(\\Lambda \\)</span> </span> that realises a non-split extension of <span> <span>\\(\\chi _2\\)</span> </span> by <span> <span>\\(\\chi _1\\)</span> </span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Ribet’s lemma for GL $$_2$$ modulo prime powers\",\"authors\":\"\",\"doi\":\"10.1007/s40687-023-00419-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Let <span> <span>\\\\(\\\\rho :G\\\\rightarrow {{\\\\,\\\\textrm{GL}\\\\,}}_2(K)\\\\)</span> </span> be a continuous representation of a compact group <em>G</em> over a complete discretely valued field <em>K</em> with ring of integers <span> <span>\\\\(\\\\mathcal {O}\\\\)</span> </span> and uniformiser <span> <span>\\\\(\\\\pi \\\\)</span> </span>. We prove that <span> <span>\\\\({{\\\\,\\\\textrm{tr}\\\\,}}\\\\rho \\\\)</span> </span> is reducible modulo <span> <span>\\\\(\\\\pi ^n\\\\)</span> </span> if and only if <span> <span>\\\\(\\\\rho \\\\)</span> </span> is reducible modulo <span> <span>\\\\(\\\\pi ^n\\\\)</span> </span>. More precisely, there exist characters <span> <span>\\\\(\\\\chi _1,\\\\chi _2 :G\\\\rightarrow (\\\\mathcal {O}/\\\\pi ^n\\\\mathcal {O})^\\\\times \\\\)</span> </span> such that <span> <span>\\\\(\\\\det (t - \\\\rho (g))\\\\equiv (t-\\\\chi _1(g))(t-\\\\chi _2(g))\\\\pmod {\\\\pi ^n}\\\\)</span> </span> for all <span> <span>\\\\(g\\\\in G\\\\)</span> </span>, if and only if there exists a <em>G</em>-stable lattice <span> <span>\\\\(\\\\Lambda \\\\subseteq K^2\\\\)</span> </span> such that <span> <span>\\\\(\\\\Lambda /\\\\pi ^n\\\\Lambda \\\\)</span> </span> contains a <em>G</em>-invariant, free, rank one <span> <span>\\\\(\\\\mathcal {O}/\\\\pi ^n\\\\mathcal {O}\\\\)</span> </span>-submodule. Our result applies in the case that <span> <span>\\\\(\\\\rho \\\\)</span> </span> is not residually multiplicity-free, in which case it answers a question of Bellaïche and Chenevier (J Algebra 410:501–525, 2014, pp. 524). As an application, we prove an optimal version of Ribet’s lemma, which gives a condition for the existence of a <em>G</em>-stable lattice <span> <span>\\\\(\\\\Lambda \\\\)</span> </span> that realises a non-split extension of <span> <span>\\\\(\\\\chi _2\\\\)</span> </span> by <span> <span>\\\\(\\\\chi _1\\\\)</span> </span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-023-00419-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-023-00419-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Abstract Let \(\rho :G\rightarrow {{\,\textrm{GL}\,}}_2(K)\) be a continuous representation of a compact group G over a complete discretely valued field K with ring of integers \(\mathcal {O}\) and uniformiser \(\pi \) .我们证明,当且仅当\(\rho \)是可<\(\pi ^n\)的可还原模时,\({\textrm{tr}\,}}\rho \)是可<\(\pi ^n\)的可还原模。更确切地说,存在字符 \(\chi _1,\chi _2 :G\rightarrow (\mathcal {O}/\pi ^n\mathcal {O})^times\) such that \(\det (t -\rho (g))\equiv (t-\chi _1(g))(t-\chi _2(g))\pmod {\pi ^n}\) for all \(g\in G\) 、当且仅当存在一个G稳定网格(\Lambda \subseteq K^2\),使得\(\Lambda /\pi ^n\Lambda \)包含一个G不变的、自由的、秩一的\(\mathcal {O}/\pi ^n\mathcal {O}\)-子模块。我们的结果适用于 \(\rho \) 不是残差无多重性的情况,在这种情况下,它回答了 Bellaïche 和 Chenevier 的一个问题(《代数学报》410:501-525,2014 年,第 524 页)。作为应用,我们证明了一个最优版本的里贝特(Ribet)阶梯,它给出了一个 G 稳定晶格 \(\Lambda \) 的存在条件,这个晶格通过 \(\chi _1\) 实现了 \(\chi _2\) 的非分裂扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Ribet’s lemma for GL $$_2$$ modulo prime powers

Abstract

Let \(\rho :G\rightarrow {{\,\textrm{GL}\,}}_2(K)\) be a continuous representation of a compact group G over a complete discretely valued field K with ring of integers \(\mathcal {O}\) and uniformiser \(\pi \) . We prove that \({{\,\textrm{tr}\,}}\rho \) is reducible modulo \(\pi ^n\) if and only if \(\rho \) is reducible modulo \(\pi ^n\) . More precisely, there exist characters \(\chi _1,\chi _2 :G\rightarrow (\mathcal {O}/\pi ^n\mathcal {O})^\times \) such that \(\det (t - \rho (g))\equiv (t-\chi _1(g))(t-\chi _2(g))\pmod {\pi ^n}\) for all \(g\in G\) , if and only if there exists a G-stable lattice \(\Lambda \subseteq K^2\) such that \(\Lambda /\pi ^n\Lambda \) contains a G-invariant, free, rank one \(\mathcal {O}/\pi ^n\mathcal {O}\) -submodule. Our result applies in the case that \(\rho \) is not residually multiplicity-free, in which case it answers a question of Bellaïche and Chenevier (J Algebra 410:501–525, 2014, pp. 524). As an application, we prove an optimal version of Ribet’s lemma, which gives a condition for the existence of a G-stable lattice \(\Lambda \) that realises a non-split extension of \(\chi _2\) by \(\chi _1\) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信