{"title":"基于磁铁矿元素含量和全岩地球化学的铁矿石起源洞察:喀麦隆西南部尼永复合体比平迪带铁地层的一个案例","authors":"Landry Soh Tamehe, Huan Li, Sylvestre Ganno, Zuxing Chen, Yanick Brice Lemdjou, Safiyanu Muhammad Elatikpo","doi":"10.1007/s12583-022-1622-4","DOIUrl":null,"url":null,"abstract":"<p>The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon. This iron district contains numerous iron mineralization hosted by the Mewongo, Bibole, Kouambo, and Zambi banded iron formations (BIFs). These BIFs contain magnetite as the main iron ore mineral associated with pyrite, and gangue minerals are quartz with minor chlorite and amphibole. The origin of iron ore from these BIFs was investigated using a combination of <i>in-situ</i> magnetite and whole-rock chemistry. The studied BIF ore samples have a narrow range of TFe between 30.90 wt.% and 43.20 wt.%, indicating a low-grade ore. The geochemical signatures of magnetite such as low contents of base metals (e.g., Cu, Co, V, and Zn) and low Co/Zn ratios < 0.85 indicate a hydrothermal origin. Combined with the geochemical features of these BIFs, e. g., high Fe/Ti and Fe/Al ratios (mean > 600 and > 75, respectively), we suggest that magnetite was derived from a mixture of seawater and ∼0.1% low-temperature hydrothermal fluids in an oxidizing environment. Collectively, low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"96 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insight into the Origin of Iron Ore Based on Elemental Contents of Magnetite and Whole-Rock Geochemistry: A Case of the Bipindi Banded Iron Formations, Nyong Complex, SW Cameroon\",\"authors\":\"Landry Soh Tamehe, Huan Li, Sylvestre Ganno, Zuxing Chen, Yanick Brice Lemdjou, Safiyanu Muhammad Elatikpo\",\"doi\":\"10.1007/s12583-022-1622-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon. This iron district contains numerous iron mineralization hosted by the Mewongo, Bibole, Kouambo, and Zambi banded iron formations (BIFs). These BIFs contain magnetite as the main iron ore mineral associated with pyrite, and gangue minerals are quartz with minor chlorite and amphibole. The origin of iron ore from these BIFs was investigated using a combination of <i>in-situ</i> magnetite and whole-rock chemistry. The studied BIF ore samples have a narrow range of TFe between 30.90 wt.% and 43.20 wt.%, indicating a low-grade ore. The geochemical signatures of magnetite such as low contents of base metals (e.g., Cu, Co, V, and Zn) and low Co/Zn ratios < 0.85 indicate a hydrothermal origin. Combined with the geochemical features of these BIFs, e. g., high Fe/Ti and Fe/Al ratios (mean > 600 and > 75, respectively), we suggest that magnetite was derived from a mixture of seawater and ∼0.1% low-temperature hydrothermal fluids in an oxidizing environment. Collectively, low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-022-1622-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-022-1622-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Insight into the Origin of Iron Ore Based on Elemental Contents of Magnetite and Whole-Rock Geochemistry: A Case of the Bipindi Banded Iron Formations, Nyong Complex, SW Cameroon
The Bipindi iron ore district is located in the central section of the Nyong Complex at the northwestern margin of the Congo Craton in Southwest Cameroon. This iron district contains numerous iron mineralization hosted by the Mewongo, Bibole, Kouambo, and Zambi banded iron formations (BIFs). These BIFs contain magnetite as the main iron ore mineral associated with pyrite, and gangue minerals are quartz with minor chlorite and amphibole. The origin of iron ore from these BIFs was investigated using a combination of in-situ magnetite and whole-rock chemistry. The studied BIF ore samples have a narrow range of TFe between 30.90 wt.% and 43.20 wt.%, indicating a low-grade ore. The geochemical signatures of magnetite such as low contents of base metals (e.g., Cu, Co, V, and Zn) and low Co/Zn ratios < 0.85 indicate a hydrothermal origin. Combined with the geochemical features of these BIFs, e. g., high Fe/Ti and Fe/Al ratios (mean > 600 and > 75, respectively), we suggest that magnetite was derived from a mixture of seawater and ∼0.1% low-temperature hydrothermal fluids in an oxidizing environment. Collectively, low-temperature hydrothermal and later metamorphic fluids were necessary for the transformation of the protolith Nyong Complex BIFs to iron ore.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.