通用中值准蒙特卡罗积分法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Takashi Goda, Kosuke Suzuki, Makoto Matsumoto
{"title":"通用中值准蒙特卡罗积分法","authors":"Takashi Goda, Kosuke Suzuki, Makoto Matsumoto","doi":"10.1137/22m1525077","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 533-566, February 2024. <br/> Abstract. We study quasi-Monte Carlo (QMC) integration over the multidimensional unit cube in several weighted function spaces with different smoothness classes. We consider approximating the integral of a function by the median of several integral estimates under independent and random choices of the underlying QMC point sets (either linearly scrambled digital nets or infinite-precision polynomial lattice point sets). Even though our approach does not require any information on the smoothness and weights of a target function space as an input, we can prove a probabilistic upper bound on the worst-case error for the respective weighted function space, where the failure probability converges to 0 exponentially fast as the number of estimates increases. Our obtained rates of convergence are nearly optimal for function spaces with finite smoothness, and we can attain a dimension-independent super-polynomial convergence for a class of infinitely differentiable functions. This implies that our median-based QMC rule is universal in the sense that it does not need to be adjusted to the smoothness and the weights of the function spaces and yet exhibits the nearly optimal rate of convergence. Numerical experiments support our theoretical results.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"1 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Universal Median Quasi-Monte Carlo Integration\",\"authors\":\"Takashi Goda, Kosuke Suzuki, Makoto Matsumoto\",\"doi\":\"10.1137/22m1525077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 533-566, February 2024. <br/> Abstract. We study quasi-Monte Carlo (QMC) integration over the multidimensional unit cube in several weighted function spaces with different smoothness classes. We consider approximating the integral of a function by the median of several integral estimates under independent and random choices of the underlying QMC point sets (either linearly scrambled digital nets or infinite-precision polynomial lattice point sets). Even though our approach does not require any information on the smoothness and weights of a target function space as an input, we can prove a probabilistic upper bound on the worst-case error for the respective weighted function space, where the failure probability converges to 0 exponentially fast as the number of estimates increases. Our obtained rates of convergence are nearly optimal for function spaces with finite smoothness, and we can attain a dimension-independent super-polynomial convergence for a class of infinitely differentiable functions. This implies that our median-based QMC rule is universal in the sense that it does not need to be adjusted to the smoothness and the weights of the function spaces and yet exhibits the nearly optimal rate of convergence. Numerical experiments support our theoretical results.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1525077\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1525077","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 1 期第 533-566 页,2024 年 2 月。 摘要。我们研究了在具有不同平滑度等级的多个加权函数空间中的多维单位立方体上的准蒙特卡罗(QMC)积分。我们考虑在独立和随机选择底层 QMC 点集(线性扰乱数字网或无限精度多项式网格点集)的情况下,用几个积分估计值的中值来近似函数的积分。尽管我们的方法不需要目标函数空间的平滑度和权重信息作为输入,但我们可以证明各自加权函数空间最坏情况误差的概率上限,其中失败概率随着估计次数的增加以指数速度趋近于 0。对于具有有限平滑性的函数空间,我们所获得的收敛率几乎是最佳的;对于一类无限可微分函数,我们可以获得与维度无关的超多项式收敛。这意味着我们的基于中值的 QMC 规则是通用的,它不需要根据函数空间的光滑度和权重进行调整,却能表现出近乎最优的收敛速度。数值实验支持我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Universal Median Quasi-Monte Carlo Integration
SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 533-566, February 2024.
Abstract. We study quasi-Monte Carlo (QMC) integration over the multidimensional unit cube in several weighted function spaces with different smoothness classes. We consider approximating the integral of a function by the median of several integral estimates under independent and random choices of the underlying QMC point sets (either linearly scrambled digital nets or infinite-precision polynomial lattice point sets). Even though our approach does not require any information on the smoothness and weights of a target function space as an input, we can prove a probabilistic upper bound on the worst-case error for the respective weighted function space, where the failure probability converges to 0 exponentially fast as the number of estimates increases. Our obtained rates of convergence are nearly optimal for function spaces with finite smoothness, and we can attain a dimension-independent super-polynomial convergence for a class of infinitely differentiable functions. This implies that our median-based QMC rule is universal in the sense that it does not need to be adjusted to the smoothness and the weights of the function spaces and yet exhibits the nearly optimal rate of convergence. Numerical experiments support our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信