Jie Chen, Xiaoyun Nicole Li, Chengxing Cindy Lu, Sammy Yuan, Godwin Yung, Jingjing Ye, Hong Tian, Jianchang Lin
{"title":"使用外部控制的主协议的注意事项。","authors":"Jie Chen, Xiaoyun Nicole Li, Chengxing Cindy Lu, Sammy Yuan, Godwin Yung, Jingjing Ye, Hong Tian, Jianchang Lin","doi":"10.1080/10543406.2024.2311248","DOIUrl":null,"url":null,"abstract":"<p><p>There has been an increasing use of master protocols in oncology clinical trials because of its efficiency to accelerate cancer drug development and flexibility to accommodate multiple substudies. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple investigational products and/or subpopulations are studied under a single protocol. Master protocols can use external data and evidence (e.g. external controls) for treatment effect estimation, which can further improve efficiency of master protocol trials. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands, assessment of fit-for-use real-world data, and considerations for different types of master protocols. Similarities and differences between regular randomized controlled trials and master protocols when using external controls are discussed. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing sensitivity analyses. Two illustrative examples for master protocols using external controls are discussed for their merits and possible improvement in causal effect estimation.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"297-319"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Considerations for master protocols using external controls.\",\"authors\":\"Jie Chen, Xiaoyun Nicole Li, Chengxing Cindy Lu, Sammy Yuan, Godwin Yung, Jingjing Ye, Hong Tian, Jianchang Lin\",\"doi\":\"10.1080/10543406.2024.2311248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There has been an increasing use of master protocols in oncology clinical trials because of its efficiency to accelerate cancer drug development and flexibility to accommodate multiple substudies. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple investigational products and/or subpopulations are studied under a single protocol. Master protocols can use external data and evidence (e.g. external controls) for treatment effect estimation, which can further improve efficiency of master protocol trials. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands, assessment of fit-for-use real-world data, and considerations for different types of master protocols. Similarities and differences between regular randomized controlled trials and master protocols when using external controls are discussed. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing sensitivity analyses. Two illustrative examples for master protocols using external controls are discussed for their merits and possible improvement in causal effect estimation.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"297-319\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2311248\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2311248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Considerations for master protocols using external controls.
There has been an increasing use of master protocols in oncology clinical trials because of its efficiency to accelerate cancer drug development and flexibility to accommodate multiple substudies. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple investigational products and/or subpopulations are studied under a single protocol. Master protocols can use external data and evidence (e.g. external controls) for treatment effect estimation, which can further improve efficiency of master protocol trials. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands, assessment of fit-for-use real-world data, and considerations for different types of master protocols. Similarities and differences between regular randomized controlled trials and master protocols when using external controls are discussed. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing sensitivity analyses. Two illustrative examples for master protocols using external controls are discussed for their merits and possible improvement in causal effect estimation.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.